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FROM THE EDITORS

Nowadays in neuroscience, it can sometimes feel impossible to keep up with 
all the new research being produced. It is estimated that every year more than 
2 million scientific papers are published globally, with a growth rate of 8-9% 
each year (Bornmann & Mutz, 2014; AJE Annual Publishing Review, 2016). As 
scientists and researchers, it is particularly common for us to get caught up in 
trying to navigate this deluge of available research in order to stay up to date 
with the latest and greatest of it, that we never really find the time to take a step 
back, look at science from a historical perspective and appreciate the progress 
that has been made.

This is exactly what we are aiming to do with the current issue of the 
Amsterdam Brain and Cognition Journal. We wanted to take a moment to look 
back at some of the most important advances and discoveries within the fields 
of neuro and cognitive science that have shaped our current understanding of 
the fields. Original pieces from our editors will be delving deeper into some of 
those topics, including the modularity of cognition (p. 5), the development of sex 
hormones research (p. 16) and the evolution of neuroscientific methdos (p. 27).

However, this issue of the ABC does not only dwell in the past, it also provides 
an opportunity for us to look towards the future. In this issue you will find four 
excellent research articles that were selected among many, from the students 
of the Brain and Cognitive Sciences Master’s at the University of Amsterdam.

Last but not least, with this issue we are welcoming eight new members to 
the editorial team! We would like to thank them all for their enthusiasm and hard 
work on making this current issue a reality. Our team is now stronger than ever 
and we are all working together to make this journal the best it can be.
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If you are interested in having your research article published in our next issue, please read 
through the submission guidelines that can be found on the same website.
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Ramón y Cajal’s drawing of the cells of the chick cerebellum (from ‘Estructure de los centros nerviosos de las aves’, Madrid, 1905).
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When we think about our human cognition, in-
trospectively it can seem as if it is ‘unified’. 
We do not feel as if we are a collection of spe-
cial-purpose systems that can interact. Rather 

we feel like one person, one process that is in control. However, 
ever since the cognitive revolution lifted the stigma on forming the-
ories about the functioning of cognitive processes, the tendency in 
cognitive psychology is to describe solely special-purpose systems 
(miller, 2003). The term that became linked to the ‘segregation’ of 
both mental and neural functions is modularity. 

The philosopher Jerry Fodor (1983) has put forward influential 
claims about the modularity of cognition. He claims modularity is 
expected to be more prevalent at the ‘periphery’ of the cognitive sys-
tem (e.g. sensory input processing and motor output processing). 
How more ‘central’ parts of cognition are organized, is less obvious. 
These processes might require such tight coupling of many func-
tions, that segregating them into modules becomes meaningless.

Modularity in cognitive processes could be inferred from be-
havioural measures. One example of a tour-de-force theory of cog-
nitive processing is the ACT-R cognitive architecture (Anderson, 
1996). Here, different processing modules are proposed, which 
perform separate functions (e.g. visual encoding, memory retriev-
al, working memory storage, etc.). Every process takes a specified 
amount of time. Modifying properties of the tasks that are modelled 
changes the sequence of steps the model goes through, and thus 
leads to different responses and reaction times. These could be 
compared to human performance. Recently the ACT-R community 
has also tried linking their cognitive modules to specific brain re-
gions (although not explicitly claiming these brain regions implement 
exactly these modules, see Anderson (2007), p. 81-86).

It is widely accepted that there is some type of modularity at the 
neural level. The brain is in some way organized, as we can for 
example find areas that relate to sensory processing, while others 
are for motor output (cf. Fodors peripheral argumentation). How fun-
damental and how clear this divide is, is what is up for debate. One 
typical example of modular organization is the distinction between 
the Fusiform Face Area (FFA) and the Parahippocampal Place Area 
(PPA), the former encoding information relevant for facial recogni-
tion, while the latter encodes specific scenes. The FFA has been 
called a module for face perception (Kanwisher, McDermott & Chun, 
1997), even though activity in this area can increase with exper-
tise in recognizing any arbitrary novel object category (Gauthier et 
al., 1999). Recently there have even been successful attempts at 
decoding viewed scenes from only FFA activity, even though the 
PPA was the proposed ‘module’ for scene recognition (Johnson & 
Johnson, 2014).

The idea that distinct brain regions perform distinct functions has 

by Sven Wientjes
MODULARITY OF COGNITION

Where do you think?

come more and more under fire with time. Some even mockingly call 
it a ‘new phrenology’ (Uttal, 2001; Anderson, 2014). Interestingly, it 
was Ramon y Cajal’s work on the ‘neuron doctrine’, which estab-
lished the neuron as the essential computational device of the brain, 
that led to a frantic search for the localization of function (Finger, 
1994) even though Cajal himself did not support even the definition 
of a psychological ‘faculty’ as it was called at the time, let alone its 
assignment to any localized neural ‘organ’. Cajal believed only the 
relations between many neurons could give rise to functions, essen-
tially dissolving the debate on localizing function.

In fMRI studies that try to localize functions, there is often prima-
cy of the psychological taxonomy of mental function, that has been 
inherited from cognitive psychology. This is potentially problematic. 
As Russell Poldrack (2010) describes, if fMRI was invented in the 
1860s, it is very likely some of the mental faculties of Phrenology 
might reliably correlate with the engagement of some brain region. 
Accepting the general terminology of cognitive psychology could 
lead to comparable errors.

But the brain is clearly organized by the different sensory modal-
ities, right? This is what is often assumed as ‘common knowledge’ 
about the brain, that we have a visual cortex, an auditory cortex, a 
tactile sensory cortex, and other areas specific to one sense. Pas-
cual-Leone and Hamilton (2001) however, build the case that the 
brain itself is in principle ‘metamodal’. It only appears modal be-
cause of functional suppression. One study they cite is Bach-y-Ri-
ta and Kercel (2003), where blind participants got a tactile device 
installed on their lower back that applied pressure correlated to a 
camera mounted on their front. After the participants got used to this 
tactile stimulation, they started to report that the sensory information 
came from ‘in front’ of them: from the location of the objects instead 
of from the lower back! Not only somatosensory areas are used for 
this processing, but also ‘visual’ areas. This is called ‘crossmodal 
plasticity’: the ability of brain regions to adapt and contribute to pro-
cessing of stimuli outside their ‘typical’ modality. Brain regions might 
get input from more than one sense, but during development one 
form of input comes to ‘dominate’ the processing of those regions.

By focusing more on how the brain learns as opposed to how it 

“It might have been 
possible for our (cortical) 
brains to be organized in 
a completely distributed 
manner, just like a typical 
PDP model. The evidence 
shows this is not the case.”

typically operates, considerations of inherent modularity or possible 
metamodality can be uncovered more clearly. The Parallel Distrib-
uted Processing (PDP) or ‘connectionism’ framework models neural 
networks that perform cognitive functions (Rumelhart & McClelland, 
1986). These networks are often trained to be optimized for cer-
tain tasks using algorithms such as backpropagation. Inspecting the 
organization of typical neural networks trained like this reveals a 
one-to-many and many-to-one mapping of neural computation to 
behavior. Each behavior is represented in multiple sites and each 
site subserves multiple behaviors (Mesulam, 1990). Cognition is 
‘distributed’ over the network as a whole. It makes little sense to 
divide these networks into regions and find their unique functional 
contribution.

But obviously there is wide diversity of patterns of activity in the 
brain. There also seems to be at least in some cases a logical pat-
tern or ‘gradient’ (e.g. orientation coding for lines in visual cortex). 
What, if not functional specialization, explains this diversity? Ander-
son (2014, p. 36) suggests that we should use a different terminolo-
gy. Instead of functional specialization, think of functional differentia-
tion. Instead of real functions, we should think of functional biases or 
functional profiles. To make this concrete, Poldrack, Halchenko, and 
Hanson (2009) gave participants a wide set of typical cognitive psy-
chology tasks while measuring fMRI activity. Using a machine learn-
ing approach on all ~214.000 measured voxels they could achieve 
an accuracy of 90% in labelling which task the participant was en-
gaged in at any point. When trying to understand what information 
is used by the machine learning algorithm, they applied dimension 
reduction to ultimately obtain only 6 variables, which performed la-
belling nearly as accurate as the full 214.000 voxel set. They linked 
the 6 dimensions, which are summaries of large-scale brain activ-
ity, back to the functions that have been reported to correlate with 
these brain regions in previous studies. The psychological content 
of these dimensions is then revealed to be quite heterogeneous. 
The first dimension relates to speech, hearing, working memory and 
control (inhibition). The second is related to many concepts involved 
in language, but also quite strongly in response inhibition and spatial 
processing. The dimensions of brain activity do have some sort of 
‘personality’, but it is unfortunately not so simple that they perform 
exactly one function.

It might have been possible for our (cortical) brains to be orga-
nized in a completely distributed manner, just like a typical PDP 
model. The evidence shows this is not the case. Network models of 
brain activity and connectivity show clear modular organization. This 
type of modularity however, is strictly in the graph-theoretical sense 
(Sporns, 2010 p. 113). This means a community of nodes (neurons) 
that share many connections between themselves, but relatively few 
towards nodes outside the community. Localizationist accounts of 
brain function based on this type of modularity are considered a fail-
ure (Sporns 2010, p. 71-72). Modern network neuroscience focuses 
on how cognitive function emerges from the brain. The observed 
modularity stems from evolutionary constraints in their vision. There 
is degeneracy in brain organization, meaning many different orga-
nizations can support similar behavior. Evolution would then find an 

organization that is optimal with respect to e.g. metabolic cost and 
volume (the brain needs to fit in the skull after all). This is called the 
‘wiring minimization hypothesis’. Ruppin, Schwartz and Yeshurun 
(1993) show that focusing on short-range over long-range connec-
tions supports a volume-efficient architecture, while also resulting 
in a modular organization. Modularity also isolates evolutionary 
mutations, allowing modules to evolve somewhat independently 
(Wagner, Pavlicev & Cheverud, 2007). This is important: if the brain 
was one fully integrated processor and all cognition was widely dis-
tributed, mutations would have massive effects and often disrupt 
the functioning of an organism. Allowing modules to evolve inde-
pendently improves the selectable phenotypic variation, which is 
beneficial. This is called the ‘evolvability’ of an organism (Kirschner 
and Gerhart, 2005).

To this day, different researchers have very different opinions 
and intuitions on the degree to which the brain is specialized and in 
which way its organization can be mapped to our psychology. The 
answers are not clear, but hopefully this brief overview can provide 
some guidance through this messy but interesting question.
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Spontaneous neuronal activity in patients 
with hearing impairment and complex 

auditory hallucinations

INTRODUCTION
Hallucinations can occur in any sensory modality, across sever-

al neurodegenerative and psychiatric diseases, as well as among 
healthy individuals (Sommer et al., 2012; Hunter et al., 2006). How-
ever, not only neurodegenerative or psychiatric conditions are asso-
ciated with hallucinations. Studies have indicated an association be-
tween sensory deprivation in a specific modality and hallucinations 
(Teunisse et al., 1996). Especially, several authors have suggested 
an association between hearing impairment and the experience 
of auditory hallucinations (Sommer, 2014; Thewissen et al., 2005; 
Linszen, Brouwer, Heringa & Sommer, 2016). Thus, some hearing 

impaired patients are confronted with the additional burden of com-
plex auditory hallucinations in their daily lives, i.e. hearing music or 
voices. However, the underlying neuronal mechanisms of auditory 
hallucinations among patients with hearing impairment are striking-
ly understudied in cognitive neuroscience. Clarifying the involved 
neuronal mechanisms could help to improve our understanding and 
future treatments for complex auditory hallucinations in this specific 
patient population.

Approximately 500 million people worldwide are affected by 
hearing impairment (Stevens et al. 2013). Recently, a cross-section-
al study showed that auditory hallucinations occurred in 16.2% of 

KEYWORDS
auditory hallucinations, hearing impairment, tinnitus, amplitude of low frequency fluctuations, fractional amplitude of low frequency 
fluctuations

ABSTRACT
Several authors have stated that there is an association between hearing impairment and complex auditory hallucinations. Such hearing 
impaired patients must deal with the additional burden of auditory hallucinations in their daily life. The underlying neuronal mechanisms of 
complex auditory hallucinations in hearing impaired patients remain poorly understood and insights from neuroimaging studies are missing. 
However, understanding the neuronal mechanisms of complex auditory hallucinations has the potential to improve treatment of auditory 
hallucinations in this specific patient population in the long- run. Research has indicated that aberrant spontaneous neuronal activity might 
underlie deafferentation and distorted top-down processes, which may be responsible for complex auditory hallucinations in patients with 
hearing impairment. We included 50 participants to address this question, consisting of 18 patients with hearing impairment and complex 
auditory hallucinations (n= 15 tinnitus), 12 patients with hearing impairment without complex auditory hallucinations (n=10 tinnitus) and 20 
healthy controls. Resting state fMRI scans were acquired and individual (fractional) amplitude of low frequency fluctuations maps were 
computed and analyzed to measure spontaneous neuronal activity. Patients with hearing impairment and complex auditory hallucinations 
showed aberrant spontaneous neuronal activity in the cerebellum, frontal operculum cortex, anterior cingulate gyrus, thalamus, occipital 
lobe and precuneus as compared to healthy controls. In addition, patients with hearing impairment and complex auditory hallucinations 
and patients with hearing impairment without complex auditory hallucinations showed overlap in aberrant spontaneous neuronal activity 
patterns in brain regions such as the cerebellum and the anterior cingulate gyrus. We propose that complex auditory hallucinations may 
be part of a spectrum on which this phenomenon shares aberrant spontaneous activity patterns with the symptom of tinnitus but is further 
marked by aberrant top-down processes indicated by aberrant spontaneous neuronal activity in frontal regions.
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the adult population of patients with hearing impairment, which was 
significantly more than in the control group (5.8%; Linszen et al., 
2018). Some researchers have suggested that deafferentation, i.e. 
the loss of sensory input in a modality often caused by a distortion in 
sensory fibers, might underlie complex auditory hallucinations, and 
that this deafferentation patterns are indicated by spontaneous neu-
ronal activity (Vanneste et al., 2013). Evidence from several resting 
state fMRI studies illustrated that (fractional) amplitude of low fre-
quency fluctuations ((f)ALFF) within the 0.01-0.1 Hz frequency band 
are a reliable instrument to measure spontaneous neuronal activity 
(Alonso-Solís et al., 2017; Chen et al., 2015; Song et al., 2011). 
Examining spontaneous neuronal activity in patients with hearing 
impairment and complex auditory hallucinations by using (f)ALFF 
measurements might provide us with new insights in aberrant neu-
ronal mechanisms of this specific patient population. Therefore, the 
present study focused on the examination of spontaneous neuronal 
activity in patients with hearing impairment and complex auditory 
hallucinations.

Auditory hallucinations are often described as perceiving dif-
ferent types of sound, e.g. hearing voices or music (Vanneste et 
al,2011; Teunisse & Olde Rikkert, 2012; Linszen et al., 2016). Multi-
ple different cognitive mechanisms, such as a change in top-down/
bottom-up balance and deafferentation might underlie the experi-
ence of auditory hallucinations. Several authors suggested that 
deafferentation, i.e. reduced auditory input which leads to missing 
sensory information in brain regions such as the auditory cortex, 
might underlie the perception of complex auditory hallucinations 
in patients with hearing impairment (Linszen, Brouwer, Heringa & 
Sommer, 2016; Sanchez et al., 2011; Braun et al., 2003). In line with 
this, Linszen and colleagues (2016) suggested that the threshold 
for neuronal firing within brain regions, which are missing senso-
ry input due to hearing impairment, may eventually decrease. As a 
result, spontaneous neuronal activity would be more likely to reach 
the threshold for neuronal firing and eventually cause auditory hallu-
cinations. This is in line with the disinhibition model which assumes 
that hallucinations are the result of brain activity which emerges due 
to reduced sensory input (David, 1999). Alongside auditory halluci-
nations, patients with hearing impairment often experience tinnitus, 
which is defined as perceiving a sound in the absence of an acoustic 
source (Kumar et al., 2014; Nam, 2005). Linszen and colleagues 
(2018) found that 87.5% of patients with hearing impairment and 
auditory hallucinations, and 77.5% of patients with hearing impair-
ment without complex auditory hallucinations experienced tinnitus. 
Some authors have suggested that tinnitus could be viewed as a 
simple auditory hallucination and might be caused by similar deaf-
ferentation patterns (Teunisse & Olde Rikkert, 2012). This raises the 
question if auditory hallucinations are part of a spectrum from simple 
(e.g. a high frequency tone, tinnitus) to complex (e.g. hearing voices 
or music) misperceptions. However, research so far is still unclear 
about the neurobiological basis of auditory hallucinations in patients 
with hearing impairment and the difference between tinnitus and 
complex auditory hallucinations. Like more complex auditory hallu-
cinations, tinnitus is strongly associated with deafferentation due to 
hearing impairment (Hoare et al., 2012). For example, Vanneste and 

colleagues (2013) performed source-localized EEG on patients with 
chronic musical hallucinations and patients with tinnitus. The au-
thors found that simple (i.e. perception of tinnitus) and complex (i.e. 
perception of music) auditory hallucinations shared neurobiological 
mechanisms, especially similarities in theta-gamma activity in the 
auditory cortex and beta activity in the dorsal anterior cingulate cor-
tex and anterior insula. In following work, De Ridder and colleagues 
(2014) stated that filling in missing information to compensate for 
reduced or missing sensory information activates brain regions such 
as the anterior cingulate and insula, which are thought to be involved 
in salience and stimulus detection processes. Their work suggests 
that auditory hallucinations and tinnitus might share neuronal mech-
anisms (Vanneste et al., 2013; De Ridder et al., 2014). Moreover, 
Ghazaleh et al. (2017) used fMRI to assess patients with unilater-
al hearing loss and tinnitus while stimulating their unaffected ear 
with sounds. The authors found increased spontaneous and driven 
neuronal activity in the auditory thalamus. Patients in the present 
study experienced hearing loss on both ears. However, the same 
spontaneous neuronal activity in the thalamus might be involved in 
bilateral hearing loss. For example, Eggermont and Roberts (2012) 
stated in their review on underlying mechanisms of tinnitus that the 
thalamocortical input arriving from a damaged ear might be involved 
in the perception of tinnitus. Especially, laterally disinhibition of the 
auditory cortex due to thalamocortical dysrhythmia might lead to low 
frequency fluctuations in the auditory cortex (Ramírez et al., 2009). 
This could lead to a lowered threshold for spontaneous neuronal 
firing in regions such as the auditory cortex, subsequently facilitat-
ing spontaneous neuronal activity in this region, eventually causing 
also complex auditory hallucinations in hearing impaired patients. 
Thus, deafferentation may induce aberrant neuronal activity in the 
auditory thalamus, which in turn lowers the threshold for sponta-
neous low frequency oscillations in the auditory cortex. Evidence for 
spontaneous neuronal firing comes from recent neuroimaging stud-
ies which investigated aberrant spontaneous activity patterns within 
the low frequency band (i.e. 0.01-0.1 Hz) by calculating (fractional) 
amplitude of low frequency fluctuation (fALFF/ALFF) maps (Alon-
so-Solís et al. 2017; Chen et al., 2015). These measurements are 
strongly associated with spontaneous neuronal activity (Song et al., 
2011) and have been used in patient populations with tinnitus (Chen 
et al., 2015) or schizophrenic patients and auditory hallucinations 
(Alonso-Solís et al., 2017). However, to our knowledge, there is no 
study yet, which investigated spontaneous neuronal activity in pa-
tients with hearing impairment and complex auditory hallucinations.

Even though complex auditory hallucinations and tinnitus might 
share neuronal mechanisms associated with deafferentation, this is 
still a matter of debate and further research is needed (Nam, 2005). 
Especially, aberrant spontaneous neuronal activity might be region 
specific for complex auditory hallucinations. Aberrant top-down pro-
cesses, i.e. the continuous influence of higher cognitive functions on 
sensory information, may be related to the experience of complex 
auditory hallucinations in patients with hearing impairment. Accord-
ing to the Bayesian theorem, the brain constantly computes predic-
tions about the environment and updates those based on sensory 
input to reduce environmental uncertainty (De Ridder, Vanneste 
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& Freeman, 2014). Thus, a change in bottom-up and top-down 
balance can strongly influence how sensory input is experienced. 
Higher cognitive processes might create and add elements to ex-
isting external stimuli (Mason & Brady, 2009), potentially leading to 
complex auditory misperceptions (De Ridder et al., 2014). This is in 
line with Powers, Kelley and Corlett (2016) who stated that halluci-
nations can be understood as the product of top-down effects on 
perception. Filling in information to compensate for missing sensory 
input would reduce uncertainty about the external stimuli (Shahin 
et al., 2009). Thus, spontaneous neuronal activity in patients with 
hearing impairment and complex auditory hallucinations might not 
be restricted to the auditory cortex, caused by deafferentation, but 
could extend to frontal regions. Aberrant low frequency fluctuations 
in the frontal cortex, indicating spontaneous neuronal activity, might 
imply distorted top-down processes, which add or create auditory 
elements to compensate for reduced sensory input within brain re-
gions such as the thalamus and the auditory cortex.

The present study
Evidence from neuroimaging studies regarding spontaneous 

neuronal activity, potentially underlying deafferentation or top-down 
processes in patients with hearing impairment and complex audi-
tory hallucinations, is missing. Therefore, the present study used 
resting state fMRI data to examine ALFF/fALFF values as an in-
dication of spontaneous neuronal activity in patients with hearing 
impairment and complex auditory hallucinations (HI-H; n=15 expe-
rienced tinnitus), patients with hearing impairment without complex 
auditory hallucinations (HI; n=10 experienced tinnitus), and healthy 
controls (HC). To our knowledge, research on hallucinations did not 
examined spontaneous neuronal activity in patients with hearing 
impairment and complex auditory hallucinations so far. Therefore, 
the present research was primarily exploratory, and we were mainly 
interested in how spontaneous brain activity in the HI-H group differs 
from spontaneous brain activity in the HC group. Furthermore, by 
including the HI group, we had the opportunity to investigate how 
spontaneous brain activity in the HI-H group differs from sponta-
neous brain activity in the HI group.

Several authors have suggested that complex auditory hallucina-
tions can be understood as the product of deafferentation (Linszen, 
Brouwer, Heringa & Sommer, 2016; Sanchez et al., 2011; Braun et 
al., 2003). Deafferentation is thought to cause aberrant spontaneous 
neuronal activity which can be measured with (f)ALFF values. Brain 
regions such as the auditory cortex or the thalamus are directly influ-
enced by hearing impairment, i.e. less sensory information is send 
to these regions. Therefore, we expected to find significantly more 
spontaneous neuronal activity in the auditory cortex and thalamus 
in hearing impaired patients with complex auditory hallucinations as 
compared to healthy controls. In addition, some researchers stated 
that complex auditory hallucinations could be the result of top-down 
processes which add or create new elements to eventually reduce 
uncertainty about distorted external stimuli (Mason & Brady, 2009; 
De Ridder et al., 2014; Powers et al., 2016). These top-down pro-
cesses might be reflected in aberrant spontaneous neuronal activity 

in frontal regions. Therefore, we expected to find significantly more 
aberrant spontaneous activity in frontal regions in the hearing im-
paired patient group with complex auditory hallucinations as com-
pared to healthy controls.

Previous research has raised the question if tinnitus and com-
plex auditory hallucinations share underlying neuronal mechanisms 
(Nam et al., 2005). Deafferenation is considered as a potentially 
underlying mechanisms of both complex auditory hallucinations 
(Linszen, Brouwer, Heringa & Sommer, 2016; Sanchez et al., 2011; 
Braun et al., 2003) and tinnitus (Teunisse & Olde Rikkert, 2012). Ad-
ditionally, research has shown that patients with tinnitus as well as 
patients with complex auditory hallucinations show similar brain ac-
tivity patterns in the auditory cortex (Vanneste et al., 2013). There-
fore, we expected to find an overlap in increased (f)ALFF values in 
the auditory cortex between patients with hearing impairment and 
complex auditory hallucinations and patients with hearing impair-
ment without complex auditory hallucinations.

METHOD
Design

We used an observational, between-subjects design to exam-
ine spontaneous neuronal activity in hearing impaired patients with 
complex auditory hallucinations, hearing impaired patients without 
complex auditory hallucinations and healthy controls. Resting state 
fMRI data of both hearing impaired patient groups was collected as 
part of the study “Understanding hallucinations II fMRI and EEG”. 
Scans of healthy controls were derived from the “Spectrum” study. 
Both studies were approved by the Local Research Ethics Commit-
tee from the University Medical Center Utrecht. All participants gave 
informed consent before their participation.

Participants
Twenty-five patients with hearing impairment and complex audi-

tory hallucinations (HI-H) and 16 patients with hearing impairment 
without complex auditory hallucinations (HI) were recruited from 
the audiological centre at the University Medical Center Utrecht. 
Derived from recent clinical tone audiometric measures, the High 
Fletcher Index (HFI, mean hearing loss in dB for tones on 1,2 and 
4 kHz) served as an indication for hearing loss. A value of 125 dB 
was assigned in case of complete deafness. Patients underwent 
a semi-structured interview, used in previous studies (Teunisse & 
Olde Rikkert, 2012), consisting out of 14 items on tinnitus and spon-
taneous acoustical phenomena to identify auditory hallucinations 
and distinguish them from tinnitus, imagery and illusions. Patients 
in the HI-H group had to have experienced an auditory hallucination 
at least once within the past month and a HFI ≥ 25dB in the worst 
ear. Patients in the HI group had no auditory hallucinations within 
the last two years (or not more than one episode of an hallucina-
tion, longer than two years ago) and a HFI ≥ 25dB in the best ear. 
Twenty healthy control participants (HC) were recruited via the web-
site www.verkenuwgeest.nl (“explore your mind”). Participants in all 
three groups were older than 18, spoke Dutch on a sufficient level 
and were mentally competent. Seven patients from the HI-H group, 

three patients from the HI group and one patient from the HC group 
were excluded because of insufficient scan quality. Another patient 
from the HI group was excluded because the patient did not meet 
the inclusion criteria any longer. Especially, the patient was neither 
a case, i.e. had complex auditory hallucinations at least once in the 
last four weeks, nor a control, i.e. the patient had not more than 
one episode of a hallucination within the last two years. The three 
groups were matched on age, and the proportions of gender and 
handedness did not differ significantly from each other between the 
groups (table 1).

MRI acquisition
Blood oxygenation level-dependent sensitive resting state fMRI 

scans of eight minutes duration were acquired with a Philips Achie-
va 3.0 Tesla scanner (Philips Medical Systems, Best, The Nether-
lands) at the University Medical Center Utrecht (3D-PRESTO pulse 
sequence with parallel imaging (SENSE) in two directions, using 
commercial 8-channel SENSE headcoil, full brain coverage within 
609 ms, TR/TE = 21.75/32.4 ms, field of view (FOV) 224 mm x 256 
mm x 160 mm, matrix = 64 mm x 64 mm x 40 mm, number of slices 
(coronal)= 40, 4 x 4 x 4 mm voxels, flip angle =10°). A total of 600 
volumes were scanned and used for data analysis. For anatomical 
reference, high resolution T1-weighted images (TR= 10 ms, TE = 
4.6 ms, FOV =240 mm/100%, voxel size = 0.75 mm x 0.75 mm x 
0.80 mm, reconstruction matrix = 200 x 320 x 320, flip angle = 90°) 
were acquired. Participants were asked to lie as still as possible in 
the scanner, with their eyes closed, and to stay awake during the 
scan.

Functional data processing
Functional neuroimaging data was processed using FMRIB’s 

Software Library (FSL) version 5.0.4. The processing pipeline was 
carried out using FEAT and consisted of non-brain removal using 
BET, motion correction using MCFLIRT, and spatial smoothing (5 
mm full-width at half maximum (FWHM) Gaussian kernel). Registra-
tion to standard space was done using FLIRT (2mm Montreal Neu-
rological Institute (MNI) standard space) and refined using FNIRT 
non-linear registration. Grand mean intensity normalization of the 
entire dataset was done with a single multiplicative factor. Linear 
detrending and band pass filtering (0.01-0.08 Hz) was applied using 
the “RESTing-state fMRI data analysis toolkit” (created by Song Xi-
aowei, http://resting-fmri.sourceforge.net).

ALFF and fALFF calculation
Research has indicated that amplitude of low frequency fluctu-

ation (ALFF) and fractional amplitude of low frequency fluctuation 
(fALFF) values are reliable instruments to investigate spontaneous 
neuronal activity (Song et al., 2011). Whereas ALFF values reflect 
the total power within the low frequency range (0.01-0.1 Hz), i.e. the 
intensity of low frequency oscillations, fALFF values are the total 
power within the low frequency range, divided by the power detect-
able in the entire frequency range (Song et al., 2011). Therefore, 
fALFF values reflect the relative contribution of low frequency oscil-

lations to the entire frequency domain. fALFF measurements have 
an increased specificity and sensitivity concerning the detection of 
spontaneous neuronal activity in grey matter (Song et al., 2011; Zou 
et al., 2008). On the other hand, ALFF measurements are known 
for having an improved test-retest reliability as compared to fALFF 
measurements (Child Mind Institute, https://fcp-indi.github.io/docs/
user/alff.html). Therefore, both measurements have their benefits 
and reflect spontaneous neuronal activity on different scales, i.e. 
only within the low frequency (ALFF) or in comparison with the en-
tire frequency domain (fALFF). (f)ALFF values were computed using 
REST. First, time courses were transformed to the frequency do-
main using a Fast Fourier Transform (FFT). The square root of the 
power spectrum was computed and averaged across the 0.01-0.08 
Hz interval (Alonso-Solís et al., 2017; Yu et al., 2014). The average 
square root was divided by the individual global mean ALFF value 
to reduce effects of variability among subjects. The resulting ALFF 
maps (per subject) were used for further statistical group analysis. 
fALFF was computed as the ratio of the power spectrum of the low 
frequency interval 0.01-0.08 Hz to that of the entire frequency band. 
Therefore, bandpass filtering was not applied before the calculation 
of fALFF values (Song et al., 2011).

Statistical analysis
Demographic data of the participants was analysed using X2 – 

test for proportions (gender, handedness, tinnitus), a one-way anal-
ysis of variance (ANOVA) between subjects for means (age) (p < 
0.05) and an independent t-test for differences in HFI between HI-H 
and HI group using SPSS 22 software (IBM Corp. Released 2013. 
IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM 
Corp.). A non- parametric group-level between subjects (group as 
between-subjects factor) whole brain analysis was performed to ex-
amine the effect of group on ALFF/fALFF values using FSL’s ran-
domise command in combination with Threshold-Free Cluster En-
hancement (TFCE, Family Wise Error (FWE)-corrected at p < 0.05). 
In addition, a conjunction analysis for the contrasts HI-H>HC and 
HI>HC as well as HI-H<HC and HI<HC with a cluster-wise threshold 
of z>2.6 was performed to examine a possible overlap in sponta-
neous neuronal activity patterns between the HI-H and the HI group.

RESULTS
Clinical characteristics

Clinical and demographical characteristics of the three groups 
are presented in table 1. The proportions of gender and handedness 
were equal in all three groups and participants were matched on 
age. Furthermore, the participants in both hearing impaired patient 
groups were matched on hearing loss (HFI_best and HFI_worst) 
and the proportions of patients who experienced tinnitus were equal 
in both groups.

Table 2 shows the categorized content of the complex audito-
ry hallucinations of participants from the HI- H group. Most of the 
patients experienced musical hallucinations or non-verbal sounds 
such as the sound of a door bell or a telephone.
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Table 1. Demographics

Group

Healthy 
controls

Hearing impair-
ment

Hearing impairment 
+ Complex auditory 

hallucinations

Statistical 
comparison

Number Partici-
pants N=20 N=12 N=18

Gender 11 females 7 females 14 females n.sa

Age
M=54

SD=7.3

M=61

SD=12.3

M=56

SD=12.2
n.sb

Handedness 17 right 
handed 5 right handed 14 right handed n.sa

HFI_best -
M=49.4

SD=21.7

M=40.6

SD=21.5
n.sc

HFI_worst -
M=59.3

SD=21

M=59.5

SD=24.8
n.sc

Tinnitus - N=10 N=15 n.s.a

ALFF Analysis
First, the effect of group on ALFF values was examined. Brain 

regions which showed significantly larger ALFF values in the HI-H 
group as compared to the HC group included the cerebellum (bilat-
eral), left temporal pole, left anterior cingulate gyrus, left parahippo-
campal gyrus, frontal orbital cortex and left inferior temporal gyrus 
(table 3, figure 1). A significant increase in ALFF values in the HC 
group as compared to the HI-H group were found in the left and 
right occipital lobe, the putamen, the left temporal occipital fusiform 
cortex, the left precuneous cortex and the right lingual gyrus (table 
4, figure 1).

Significantly higher ALFF values in the HI as compared to the HC 
group were found in the cerebellum (bilateral) and in the left tempo-
ral pole (appendix A, figure 2). The left cuneal cortex, the left insu-
la, the right lingual gyrus, the left temporal occipital fusiform cortex, 

Notes. n.s. no significant effect; aComparison between groups using χ2-test; bComparison 
between groups using one-way ANOVA, cComparison between groups using independent 
t-test, unpaired, 2-tailed.

Table 2. Categorized content of auditory hallucinations in HI-H group

Categorization

Music Verbal Non-verbal

Music (radio) X

Music, Murmuring crowd X X

Radio, voice of famous news moderator X X

Music, children shouting name, door bell X X X

Calling name X

Music X

Fly X

Airplanes, storm, Murmuring crowd X

Sword fight. Music X X

Melody, instrumental X

Music, Murmuring crowd X X

Flight of Birds X

Music, helicopter X X

Music X

Music X

Murmuring crowd X

Noise, tap X

Voices (cannot understand), door bell telephone X

Notes. The categorization of auditory hallucinations into musical, verbal and non-verbal 
auditory hallucinations is based on work by Blom and Sommer (2010). The categories 
are based on the content of the auditory hallucinations. We decided to categorize the 
hearing of many voices, without being able to understand what those voices are saying, as 
non-verbal hallucinations.

the left putamen and the left precentral gyrus showed higher ALFF 
values in the HC group as compared to the HI group (appendix A, 
figure 2). We did not find a significant difference in ALFF values 
between HI-H and HI group.

fALFF Analysis
Brain regions which showed significant higher fALFF values for 

the HI-H group as compared to the HC group included the left cere-
bellum, the frontal operculum cortex, the right and left thalamus and 

Table 3. Group level contrast of HI-H > HC for ALFF

Peak MNI coordinates

Cluster 
size

Peak t-value x y z Brain region

490 6.29 -36 -42 -46 Left cerebellum

366 6.53 24 -40 -54 Right cerebellum

211 4.92 -14 28 14
Anterior left cerebral

white matter

97 4.31 -10 -16 -40 Brainstem

44 4.16 4 18 22
Anterior left cingulate

gyrus

10 4.22 -36 6 -48 Left temporal pole

9 4.14 56 -44 -28
Right inferior temporal

gyrus

8 3.89 -52 -60 -38 Left cerebellum

7 3.84 -28 -26 -30
Left parahippocampal

gyrus

6 3.83 -16 24 -12 Frontal orbital cortex

6 3.91 -50 -44 -22
Left inferior temporal

gyrus

6 3.91 12 -22 -40 Brainstem

Table 4. Group level contrast of HI-H < HC for ALFF

Peak MNI coordinates

Cluster 
size

Peak t-value x y z Brain region

1505 5.72 -10 -78 8 Left Occipital Lobe

240 7.31 -32 -28 2
Left cerebral white 
matter/Putamen

53 4.62 -36 -52 -18
Left Temporal Occipital

Fusiform Cortex

29 3.83 -24 -50 48
Left Superior Parietal

Cortex

16 3.83 -26 -20 52 Left Precentral Gyrus

13 4.08 20 -74 26 Right Cuneal Cortex

13 3.93 -12 -52 8 Left Precuneus Cortex

10 3.99 18 -66 -2 Right Lingual Gyrus

9 3.72 -24 -34 56 Left Postcentral Gyrus

9 3.98 16 -78 16 Right Occipital Lobe

Notes. Table shows significant clusters (p<0.05, FWE corrected) of whole brain analysis

Notes. Table shows significant clusters (p<0.05, FWE corrected) of whole brain analysis.

the left posterior temporal cortex (table 5, figure 3). No significantly 
higher fALFF values were found for the HC group as compared to 
the HI-H group.1).

The left superior parietal lobule, the right lateral occipital cortex, 

Table 5. Group level contrast of HI-H > HC for fALFF

Peak MNI coordinates

Cluster 
size

Peak t-value x y z Brain region

265 5.08 -10 -80 -28 Left Cerebellum

249 5.56 36 26 6
Frontal Operculum 

Cortex

148 6.51 16 -44 32
Right Posterior Cingu-

late Gyrus

84 4.98 -20 -70 -48 Left Cerebellum

70 4.57 -20 -14 8 Right Thalamus

54 4.13 32 -58 28
Right Superior Lateral 

Occipital Cortex

46 4.85 2 -54 -38 Cerebellum

44 4.48 -16 -36 40
Left posterior Cingula-

te Gyrus

41 4.44 -18 -16 8 Left Thalamus

36 4.75 38 -10 32
Right Precentral 

Gyrus

29 4.18 -12 -46 24 Left Posterior Cingula-
te Gyrus

29 5.21 -30 -40 -16
Left Posterior 

Temporal
Fusiform Cortex

25 4.28 -34 -74 16 Left Lateral Occipital 
Cortex

Notes. Table shows significant clusters (p<0.05, FWE corrected) of whole brain analysis.

Figure 1. Regions associated with increased/decreased ALFF values in the HI-H 
group as compared to HC group. Red colored regions showed a significant increase 
in ALFF values in the HI-H group. Blue colored regions showed a significant decrease in 
ALFF values in the HI-H group. The shown activations are thresholded t-stat images from 
the non-parametric TFCE- based test (p < 0.05, FWE corrected).

Figure 2. Regions associated with increased/decreased ALFF values in the HI group 
as compared to HC group. Red colored regions showed a significant increase in ALFF 
values in the HI group. Blue colored regions showed a significant decrease in ALFF values 
in the HI group. The shown activations are thresholded t-stat images from the non-para-
metric TFCE- based test (p < 0.05, FWE corrected).

Figure 3. Regions associated with increased fALFF values in the HI-H group as com-
pared to HC group. Red colored regions showed a significant increase in fALFF values 
in the HI-H group. The shown activations are thresholded t-stat images from the non-para-
metric TFCE-based test (p < 0.05, FWE corrected).

Figure 4. Conjunction analysis for ALFF values of (HI-H > HC) ∩ (HI > HC) and (HI-H < 
HC) ∩ (HI < HC). Red colored regions showed overlap in cluster activation for an increase 
in ALFF values for the two contrasts HI-H > HC and HI > HC. Blue colored regions showed 
overlap in cluster activation for a decrease in ALFF values for the two contrasts HI-H < HC 
and HI < HC. The shown activations are thresholded z-stat images from the conjunction 
analysis in FSL (z > 2.6).

the right frontal pole and the right lingual gyrus showed, among 
others, higher fALFF values for the HI group as compared to the 
HC group (appendix B). Significant higher fALFF values for the HC 
group as compared to the HI group were found in the left cerebellum 
(appendix B). We did not find a significant difference in fALFF values 
between HI-H and HI group.

Table 6. Conjunction analysis ALFF

Peak MNI coordinates

Cluster 
size

Peak z score x y z Brain region

(HI-H > HC) ∩ (HI > HC)

229 5.1 30 -42 -54 Right Cerebellum

162 5.2 -28 -42 -52 Left Cerebellum

7 3.83 4 18 22
Right Anterior Cingu-

late Gyrus

(HI-H < HC) ∩ (HI < HC)

266 4.94 -18 -76 24 Left Cuneal Cortex

116 4.61 -12 -72 0 Left Lingual Gyrus

19 3.86 -18 -50 20
Left Posterior Cingula-

te Gyrus

10 3.71 -20 -58 28
Left Superior Precu-

neous Cortex

Notes. Table shows significant clusters (p<0.05, FWE corrected) of whole brain analysis.
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Conjunction Analysis
The conjunction analysis revealed significantly larger ALFF val-

ues in both groups in the right and left cerebellum, and the right 
anterior cingulate gyrus (table 6, figure 4). Regions which showed 
significantly larger ALFF values in the HC group as compared to 
the HI-H and HI group included the cuneal cortex, the left lingual 
gyrus and the left posterior cingulate gyrus (table 6, figure 4). We 
did not find a significant overlap in fALFF values between HI-H and 
HI group.

DISCUSSION
Our results demonstrate that aberrant spontaneous neuronal 

activity in various regions differentiate patients with hearing impair-
ment and complex auditory hallucinations from healthy controls. For 
example, we found an increase in spontaneous neuronal activity 
in frontal regions such as the frontal operculum cortex in patients 
with hearing impairment and complex auditory hallucinations. These 
spontaneous brain activity patterns might indicate an involvement of 
top-down cognitive processes in the perception of complex auditory 
hallucinations. Furthermore, our findings indicate that there is no 
significant difference in spontaneous neuronal activity between pa-
tients with hearing impairment and complex auditory hallucinations, 
and patients with hearing impairment without complex auditory hal-
lucinations. Surprisingly, we found aberrant spontaneous activity for 
both patient groups in the bilateral cerebellum and right anterior cin-
gulate gyrus but not in the auditory cortex.

The first aim of the present study was to determine how sponta-
neous neuronal activity in the HI- H group differs from spontaneous 
neuronal activity in the HC group. Our results indicate that patients 
who suffer from complex auditory hallucinations had significantly 
more spontaneous neuronal activity in regions such as the bilateral 
cerebellum, the left temporal pole and the anterior cingulate gyrus 
as compared to healthy controls. Furthermore, findings demonstrate 
a significant decrease in spontaneous neuronal activity in regions 
including the right lingual gyrus, the left temporal occipital fusiform 
cortex, left putamen, precentral gyrus, bilateral occipital lobe and left 
superior parietal cortex in the HI-H as compared to the HC group. 
In addition, patients with hearing impairment and complex auditory 
hallucinations showed increased fALFF values in the cerebellum, 
which is in line with the ALFF analysis. Notably, fALFF values also 
revealed an increase spontaneous neuronal activity in the right fron-
tal operculum cortex, the thalamus (bilateral) and the left posterior 
temporal cortex in hearing impaired patients with complex auditory 
hallucinations as compared to healthy controls. Therefore, these re-
gions probably significantly contribute to the overall spontaneous 
neuronal activity in the entire frequency domain of these patients. 
However, no significant decreases of fALFF values in the HI-H 
group as compared to the HC group were found. Thus, our results 
indicate that there is no decreased spontaneous neuronal activity in 
the low frequency domain in the hearing impaired patient group with 
complex auditory hallucinations, as compared to healthy controls, 
that significantly influenced the overall spontaneous brain activity in 
the whole frequency domain.

ALFF/fALFF results indicate spontaneous neuronal activity in the 
cerebellum in the HI-H group. To our knowledge, this activation pat-
tern was not found in previous examinations of spontaneous neuro-
nal activity of patients with complex auditory hallucinations. Howev-
er, in line with our findings for the HI group, Chen and colleagues 
(2015) found larger ALFF values in the cerebellum of patients with 
tinnitus. Therefore, the spontaneous activity we found in the cere-
bellum in the hearing impaired patient group with complex auditory 
hallucinations might rather underlie the perception of tinnitus than 
complex auditory hallucinations since the majority of patients ex-
perienced tinnitus as well (n=15 tinnitus). Moreover, research has 
indicated that structural changes in the cerebellum might underlie 
auditory hallucinations in patients with schizophrenia (Cierpka et al., 
2017). However, Chen et al. (2015) did not find significant differenc-
es in grey matter volume of tinnitus patients as compared to healthy 
controls. There is no research, yet, on structural changes in e.g. the 
cerebellum of patients with hearing impairment and complex audito-
ry hallucinations and if these might influence aberrant spontaneous 
neuronal activity remains unknown. Thus, future studies should ex-
amine if there are structural changes in the cerebellum of patients 
with hearing impairment and complex auditory hallucinations and if 
these are correlated with an increase of ALFF/fALFF values within 
this brain region.

Furthermore, our findings demonstrate increased ALFF values 
in the anterior left cingulate gyrus, and increased fALFF values in 
the left posterior temporal fusiform cortex in the HI-H group. Bonilha 
and colleagues (2017) suggested that these regions might serve as 
a focal point for integration of auditory and conceptual processing. 
Moreover, research has indicated that activation in the anterior cin-
gulate is associated with salience and stimulus detection processes 
(De Ridder et al., 2014). Thus, the increased spontaneous neuronal 
activity we found within these regions might indicate that patients 
with hearing impairment and complex auditory hallucinations en-
gage in a top-down process in which missing or reduced sensory 
auditory input is detected and higher cognitive processes construct 
additional elements eventually leading to auditory hallucinations 
(De Ridder et al.,2014). Increased fALFF values in the right fron-
tal operculum cortex further indicate the involvement of top-down 
mechanism in the HI-H group. For example, Eggermont and Rob-
erts (2012) stated that sensory input which arrives from a damaged 
ear might engage frontal networks to create a more accurate au-
ditory perception. Furthermore, the results of the fALFF analysis 
showed spontaneous neuronal activity in the thalamus (bilateral) in 
the HI-H group. Therefore, aberrant thalamocortical rhythms due to 
a distortion of incoming sensory input, might trigger spontaneous 
neuronal activity in frontal networks such as the frontal operculum 
cortex. This is in line with Powers and colleagues (2016) who stated 
that uncertainty evoked by distorted sensory input is compensated 
by the engagement of frontal networks, aimed at constructing more 
accurate auditory perceptions.

The aberrant spontaneous activity we found in the thalamus in 
the HI-H group, is in line with previous research in which the authors 
found larger fALFF values in the thalamus of schizophrenic patients 
with consistent auditory hallucinations (Alonso-Solís et al., 2017). 

Even if Alonso-Solís and colleagues (2017) examined fALFF val-
ues in a different patient group, the increased fALFF values in the 
thalamus in the HI-H group might indicate that the thalamus plays 
a crucial role for the emergence of complex auditory hallucina-
tions among various diagnostic groups. However, this assumption 
remains hypothetical and future studies which investigate sponta-
neous neuronal activity patterns across different diagnostic groups 
are needed.

In line with previous research on tinnitus and schizophrenic hal-
lucinating patients, we found decreased ALFF values in the HI-H 
group in the bilateral occipital lobe (Chen et al., 2015; Alonso-Solís 
et al., 2017), the left precuneus cortex and the right lingual gyrus 
(Alonso-Solís et al., 2017; Hare et al., 2017). In combination with 
the increased fALFF/ALFF values found in the anterior and posterior 
cingulate gyrus, these results indicate aberrant spontaneous neuro-
nal activity in the default network in patients with hearing impairment 
and complex auditory hallucinations. However, it remains unclear if 
this aberrant spontaneous neuronal activity is solely attributable to 
the perception of auditory hallucinations or rather reflects sponta-
neous activity related to hearing loss or tinnitus. For example, Yang 
and colleagues (2014) found decreased ALFF values in patients 
with unilateral hearing loss in the bilateral precuneus.

The second aim of the present study was to determine how spon-
taneous neuronal activity in the HI-H group differs from spontaneous 
neuronal activity in the HI group. Our results show that there were 
no significant differences in ALFF/fALFF values between patients 
with hearing impairment and complex auditory hallucinations and 
patients with hearing impairment without complex auditory halluci-
nations. Moreover, our results from the conjunction analysis indicate 
that both groups share patterns of spontaneous neuronal activity 
in the bilateral cerebellum and the right anterior cingulate gyrus as 
compared to healthy controls. Moreover, HI-H and HI group showed 
decreased ALFF values in the left cuneal cortex, the left lingual gy-
rus and the left posterior cingulate gyrus. The proportions of pa-
tients who experienced tinnitus were equal in both patient groups. 
Therefore, the two groups might share spontaneous activity patterns 
because they were equally affected by the perception of tinnitus. 
In addition, aberrant spontaneous activity patterns might have re-
flected tinnitus only, and not complex auditory hallucinations in the 
HI-H group. However, ALFF values extended to frontal regions such 
as the frontal orbital cortex in the HI-H group. There was also a 
decrease in ALFF values which extended to regions such as the 
bilateral occipital lobe and the left superior parietal cortex in the 
HI-H group as compared to the HI group. Even though these spon-
taneous neuronal activity patterns did not significantly differ with the 
HI group, these results indicate that aberrant spontaneous activity 
patterns in the HI-H group extended to different regions. This indi-
cates that other cognitive processes might be distorted in the HI-H 
as compared to the HI group. (see figure 1 and figure 2). Moreover, 
results showed a significant increase of ALFF values in the left tem-
poral pole in the HI-H and HI group (table 3, appendix A). This is 
in line with previous work by Alonso-Solís and colleagues (2017) 
who found significant larger ALFF values in schizophrenic patients 

with auditory hallucinations in this brain area. Thus, although par-
ticipants in both patient groups in the present study were equally 
affected by the perception of tinnitus, we found spontaneous brain 
activity patterns which are comparable to other patient groups with 
auditory hallucinations. Therefore, our results, in line with previous 
work (Alonso-Solís et al., 2017), indicate that tinnitus and complex 
auditory hallucinations might share spontaneous activity patterns, 
for example in the left temporal pole.

In the end, we propose that aberrant spontaneous neuronal ac-
tivity is associated with the experience of  complex auditory hal-
lucinations. We suggest a spectrum model on which both, tinnitus 
and auditory hallucinations, are marked by aberrant spontaneous 
neuronal activity patterns in certain brain areas such as the anteri-
or cingulate gyrus and the cerebellum. On this spectrum, aberrant 
spontaneous activity appears to extend to subcortical regions such 
as the thalamus and cortical regions such as the frontal operculum 
and frontal orbital cortex in hearing impaired patients with complex 
auditory hallucinations as compared to healthy controls.

Limitations
The composition of the three different groups reveals some lim-

itations. First, healthy controls were expected to hear significantly 
better than the participants in the two patient groups, but only the 
exact data of hearing loss of the participants in the HI-H and the HI 
group was available. However, the question raises if the differences 
we found between HI-H and the HC group are the result of hearing 
loss only, and thus not reflect spontaneous neuronal activity relat-
ed to complex auditory hallucinations. Second, not all patients in 
the HI-H and HI group experienced tinnitus (15 patients in the HI-H 
group; 10 patients in the HI group, table 1). Therefore, participants 
without tinnitus in the two patient groups might have influenced the 
results. Furthermore, there was no data available concerning tinni-
tus duration, i.e. if the participants continuously perceived a tinnitus. 
In addition, we were not able to check for differences between ed-
ucational levels between all three groups because the educational 
level of the healthy controls was unknown. Therefore, we could not 
exclude the possibility that these factors differed among the partic-
ipants and influenced the results. Finally, the participant numbers 
between the three different groups were not equal, due to e.g. ex-
clusions based on scan quality or inclusion criteria. Thus, there was 
a power difference between the three groups which might have in-
fluenced the results. The optimal solution for these limitations would 
be a four groups design in which all participants are affected by 
an equal amount of hearing loss. The four groups should contain a 
group with complex auditory hallucinations  and tinnitus, complex 
auditory hallucinations without tinnitus, no complex auditory hallu-
cinations and tinnitus and no complex auditory hallucinations and 
no tinnitus. However, it remains difficult to find a group of patients 
that is hearing impaired (with and without complex auditory halluci-
nations) but does not perceive tinnitus, as indicated by recent work 
in which 77.5% of patients with hearing impairment without auditory 
hallucinations and 87.5% of patients with hearing impairment and 
complex auditory hallucinations also perceived tinnitus (Linszen et 
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al., 2018). In addition, 25 participants are considered to be an ade-
quate group size for a resting state fMRI study (Chen et al., 2017) 
and future studies should uphold these standards. Moreover, addi-
tional information about tinnitus duration and education should be 
gathered to exclude a possible influence of these factors on sponta-
neous neuronal activity.

Conclusion
We identified aberrations in low frequency fluctuations in frontal, 

posterior and subcortical regions in patients with hearing impairment 
and complex auditory hallucinations. In addition, we found an over-
lap in aberrant neuronal activity patterns in the cerebellum and the 
anterior cingulate gyrus as well as posterior regions in patients with 
hearing impairment and complex auditory hallucinations and pa-
tients with hearing impairment without complex auditory hallucina-
tions. Our findings suggest that aberrant low frequency fluctuations 
in these regions might be an underlying cause of both complex au-
ditory hallucinations and tinnitus in patients with hearing impairment. 
However, future research is needed to clarify if aberrant sponta-
neous neuronal activity in patients with hearing impairment reflects 
hearing loss itself, tinnitus or underlying neuronal mechanisms of 
complex auditory hallucinations.
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“W
hen you meet a human being, the first distinction you make is ‘male’ or 
‘female’, and you are accustomed to making the distinction with unhes-
itating certainty,” Freud said once (as cited in Oudshoorn, 1994). Early 
twentieth century scientists, however, became increasingly confused by 

their own assumptions regarding male and female characteristics. They focused on sex hormones 
but encountered difficulties in making accurate definitions of male and female sex hormones. This 
essay explores how our understanding of sex hormones was shaped throughout the history of neu-
roscience and life sciences, and presents animal studies that focused on sex hormones and how 
their results translated rather misleadingly to humans due to a biased testing across males and 
females. It is inspired by Nelly Oudshoorn’s book Beyond the Natural Body: An Archeology of Sex 
Hormones.

by Eylül Turan

SEX HORMONES
How we came to understand them 
and what went wrong

First, it is important to establish the difference between the terms 
“sex” and “gender”. Rubin (1975) restricted the concept of sex to 
biological sex, specified by anatomical, hormonal or chromosomal 
criteria. Gender, on the other hand, refers to all other socially con-
structed characteristics attributed to males and females (e.g. social 
roles and psychological or behavioral characteristics). 

Since the early decades of twentieth century, the prevailing view 
was that the concept of body was hormonally constructed. In other 
words, sex hormones would give rise to a natural body that would be 
either male or female. Scientists 
were in search for ovaries, testes 
and urines that would allow them 
to construct the hormonal body. 
Throughout their search howev-
er, they were criticized by some 
(e.g. Oudshoorn, 1994) claiming 
that the very notion of a “natural” 
body is a constructed one (i.e. 
constructed by scientists, clini-
cians, drug industries). Others 
accepted the notion of a “natural” 
body and its constituents (i.e. 
sex hormones), but were critical 
of how sex hormones were be-
ing tested and how results from 
these studies were interpreted (e.g. Berry and Zucker, 2011).

But how did the concept of sex hormones even arise? In his book 
History of Animals, Aristotle was one of the first to relate the pres-
ence of ovaries to female sexual development. At the beginning of 
the nineteenth century, gynecological textbooks defined ovaries as 
“the organ of crisis which is missing in the male body” (as cited in 

Gallagher and Laqueur 1987, p.27). On the other hand, the idea that 
the testes are related to male sexuality, bravery and longevity has its 
roots in Greek and Roman thinking. 

These and many other pre-scientific ideas led to more scientific 
developments. Back in 1905, a professor at the University College in 
London, named Ernest H. Starling, introduced the term “hormone”. 
In the following years, with the contribution of other scientists, sex 
hormones were defined as “the chemical messengers of mascu-
linity and femininity” (Oudshoorn, 1994, p.17). Thus, the scientific 

conceptualization of sex and sex 
hormones remained very simple 
and straightforward with only 
having two sex hormones, one 
for each sex. Such conceptual-
ization was widely accepted by 
the day’s cultural notions regard-
ing masculinity and femininity: 
females and males as opposite 
categories, rather than being two 
independent or complementary 
dimensions (Lewin, 1984).

In the 1930s a wave of criti-
cism regarding terminology and 
classification arose. Especially 
scientists in Amsterdam repeat-

edly expressed their discontent about the use of the terms “male” 
and “female” sex hormones. Ian Hacking once wrote controversially, 
“We did not find sex hormones somewhere in a lost corner, like a 
desert island lost in the mist. We ourselves called sex hormones into 
existence” (as cited in Oudshoorn, 1994, p.43).

“Such conceptualization 
was widely accepted by 
the day’s cultural notions 
regarding masculinity and 

femininity: females and 
males as opposite catego-
ries, rather than being two 
independent or comple-

mentary dimensions.”
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Initially, the study of sex hormones was dominated by clinicians 
and it was only during the 1910s that laboratory scientists entered 
the field, becoming the dominant researchers in the 1920s. Labora-
tory scientists introduced new methods such as reproductive behav-
ior tests on guinea-pigs and rats, and focused on standardization 
procedures. They transferred the study of sex hormones from the 
clinic to the laboratory, and the clinic simply became an audience 
for the products they developed (Oudshoorn, 1994). Following this 
transformation, a landmark moment for the field was the first Con-
ference on the Standardization of Sex Hormones in 1932. Pharma-
ceutical companies now also depended on the laboratories’ work. 
For example, in the Netherlands, the Organon (a pharmaceutical 
company) personnel were trained by Ernst Laqueur’s laboratory at 
the University of Amsterdam. With the laboratory as a bridge, the 
clinic and the pharmaceutical interest matched each others’ needs 
and this collaboration led fe-
male sex hormones to be the 
subject of not only science but 
also of the business industry. 
In the early 1930s, the female 
body became the focus for hor-
mone therapy, with female sex 
hormones being used univer-
sally to cure various diseases 
such as eczema and diseases 
of joints (both diseases were 
thought of being related to dys-
functioning ovaries). Sex hormones entered the market as pills con-
trolling fertility, or taken for menstrual and menopausal problems, 
but not for contraception and male menopause: marketing of male 
sex hormones could not reach the same success. 

Probably the most revolutionary discovery regarding sex hor-
mones is the fact that they are not restricted to humans, or even 
to living organisms. As Robert Frank (1929) wrote, the female sex 
hormone could be found in the animal and even in the vegetable 
kingdom (as cited in Oudshoorn, 1994). Laboratory scientists were 
especially interested in animal testing and utilized mice and rat for 
their experiments. 

In the 1990s, several surveys indicated that for animal testing 
there is a non-negligible male bias in the literature. For example, 
in 1984 78% and in 1991 81% of the studies reported in the jour-
nal of Behavioral Neuroscience used male animals as their subjects 
(Sechzer et al., 1994). 

Berkley (1992) noted that in four neuroscience journals, 57% of 
single-sex studies focused on males, while only 17% were done us-
ing females (others did not indicate subject sex). As animal mod-
els were widely used for developing new treatments, these findings 
brought to question the reliability of female health-care medications. 
Unfortunately, the situation did not improve, as in 2009 studies of 
single-sex mammals in Behavioral Neuroscience had a male bias of 
65% (Beery & Zucker, 2011). In fact, in 2009, 8 out of the 10 biolog-
ical disciplines had a male-bias with neuroscience being the most 

pronounced one  (a ratio of 5.5 males to 1 female). The sex of sub-
jects was not reported in 22-42% of neuroscience, physiology and 
interdisciplinary biology journals. Additionally, 75% of the studies in 
three highly cited immunology journals did not specify the sex of 
the animals that they used. For human studies, although male bias 
was evident in some fields, including interdisciplinary neuroscience, 
compared to non-human animal research the number of articles 
reported on both sexes was higher. Interestingly, while male-only 
studies have increased since 1969 in non-human animal research, 
human research showed an opposite trend: the majority of studies 
since 1993 investigated both sexes. This raises questions regarding 
the reliability of how results from non-human animal studies trans-
late to humans. 

For instance, although women are diagnosed with anxiety disor-
der twice as often as men (Bekker and van Mens-Verhulst, 2007), 

most of the animal studies that 
focus on anxiety and anxiolytic 
drugs use male rats (Palanza, 
2011). Further, although wom-
en experience stroke events 
more often than men over the 
course of their lives (Reeves 
et al., 2008), studies in sev-
eral journals that focused on 
animal models of stroke (e.g. 
Journal of Stroke and Cere-
brovascular Disease) reported 

results that were male biased: 65% focused on males, none were 
on females, 10% were on both sexes, and 25% did not specify sex 
(Beery and Zucker, 2011). Last but not least, despite the fact that 
women are at greater risk than men of suffering from clinical pain 
conditions (Fillingim et al., 2009), 79% of the studies reported in the 
Journal of Pain between 1996 and 2005 included only male subjects 
(Mogil and Chanda, 2005). 

Berkley (1992) as well as Sechzer and colleagues (1994) en-
couraged journals to make sex-specification part of their policy, and 
to advise against generalizing one-sex studies to the opposite-sex. 
Unfortunately, these recommendations have been neglected by 
most of the scientific community. Even today, journal policies do 
not greatly encourage study of both sexes and accurate reporting 
of subject sex. 

There are two arguments stated for not studying females in animal 
research. Some researchers believe that drugs might have adverse 
effects on females and therefore generalize findings from males to 
females, while others simply consider males as representative of 
the human species and accept them as the norm (Marts and Keitt, 
2004). Many researchers find it time and resource consuming to 
control for female estrous/menstrual cycles or say that after under-
standing the phenomenon in males, they’ll check whether it’s there 
in females (McCarthy et al., 2012). McCarthy and colleagues (2012) 
believe that the main reason actually arises due to misconceptions 
that it is challenging to do it the right way, and misconceptions of 

“Although women are 
diagnosed with anxiety dis-

order twice as often as 
men, most of the animal 

studies that focus on 
anxiety and anxiolytic drugs 

use male rats.”

thinking that comparisons between females and males would not 
provide valuable insights.

As Mogil and Chanda (2005) stated it seems that “basic scien-
tists are shirking their responsibilities to half of the human population 
by avoiding the use of direct animal models of them” (Mogil and 
Chanda, 2005, p. 4). It should be noted, however, that there have 
been encouraging developments over the past few years such as 
the establishment of the Organization for the Study of Sex Differ-
ences which met in 2007 for the first time and the initiative of a new 
journal: Biology of Sex Differences. 
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Longitudinal Assessment of Radiation 
Therapy Effects on White Matter Structures:

a Diffusion MRI Study

INTRODUCTION
Radiation therapy (RT) is a common treatment procedure for 

both primary and metastatic tumors in the brain, often in combina-
tion with surgery and chemotherapy. As radiation is not selective 
to tumor cells but targets all cells in the process of replication, the 
efficacy of RT is hindered by the radio-resistance of healthy tissue 
following ionization (Cox, Stetz, & Pajak, 1995; Dawson & Jaffray, 
2007; Kelley, Knisely, Symons, & Ruggieri, 2016). The effect of radi-
ation on brain tissue is dynamic and involves structures outside the 

targeted tumor volume, directly or indirectly (Schultheiss, Kun, Ang, 
& Stephens, 1995; Tofilon, Fike, Tofilona, & Fikeb, 2016). Despite 
the substantial advances in RT technology and application (i.e., 
increased precision and conformality, intensity-modulated tech-
niques, fractionated stereotactic radiosurgery; Baskar, Lee, Yeo, 
& Yeoh, 2012; Bucci, Bevan, & Roach, 2005), regional sensitivity 
to radiation dosing is not well documented. This is especially true 
for white matter (WM) structures. Current clinical protocols include 
guidelines of maximum dosing for brain parenchyma and several 

KEYWORDS
radiation therapy, white matter structures, dMRI, brain tumor, cognitive impairment

ABSTRACT
Purpose: To demonstrate the long-term, regional sensitivity of white matter (WM) structures to radiation exposure during clinical protocols 
of radiation therapy (RT), using diffusion MRI (dMRI).

Methods and Materials: The sample consisted of 38 patients (20 females), showing clinical heterogeneity (e.g., age, pathology, tumor 
location, treatment planning). The imaging dataset included 38 individual CT scans and 393 MRI / dMRI scans assessed pre-operative, 
post-operative pre-RT, and post-RT longitudinally. Following a pre-processing pipeline tuned for standard neuro-oncological settings, we 
performed an atlas-based ROI analysis and estimated DTI-based metrics for all datapoints. We achieved the end stage of having the ROI 
delineation, ROI volume, DTI metrics (i.e., FA, MD, AD and RD) and RT dose in the same space. 

Results: FA showed a stronger pre – post RT decreasing trend in WM that received higher doses compared to WM that received lower 
doses. Longitudinally, a similar trend but a shift in amplitude was observed (i.e., lower FA at higher doses). MD showed a clear increasing 
trend in WM that received higher doses, compared to WM that received lower doses. This was again the most evident between the pre- 
and first post-RT assessments, but persisted in time. The volume of ROIs showed variability (i.e., up to 60-80% change) both within and 
between patients.

Conclusions: The volume of structures is changing in time, and this must be accounted for due to partial voluming effects. Results, 
overlooking this, are prone to error. Then, there seems to be a longitudinal effect (consistent with literature) of dose levels on DTI metrics 
of WM structures, with higher doses leading to a decrease in FA and increase in MD. In summary, when using an adequate and robust 
analysis pipeline, dMRI proves to be insightful in longitudinal neuro-oncological settings. 
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organs at risk for which the structure-function relationship is well-de-
scribed (e.g., brain stem, optic chiasm, hippocampi; Scoccianti et 
al., 2015). However, regional constraints on WM structures are not 
a standard consideration in part because the focus is mainly placed 
on its connective or supportive role rather than its function, and in 
part because of the methodological limitations of WM-related imag-
ing (Connor et al., 2016; Gondi et al., 2014; Nagesh et al., 2008). 

Radiation-induced WM damage has been reported to include 
axonal injury, demyelination, neuro-inflammation, and necrosis (Ku-
mar et al., 2000; Nagesh et al., 2008; Wang et al., 2009). Impor-
tantly, these structural deficits seem to correlate in time with both 
verbal and non-verbal functional cognitive impairment, including ex-
ecutive functioning, working memory, visuospatial processing, and 
decision making (Douw et al., 2009; Greene-Schloesser et al., 2012; 
Kerchner et al., 2012). Temporally, the radiation-induced cognitive 
impairment has been divided into three phases post-RT: acute (<2 
weeks), early-delayed (2 weeks to 3-4 months) and late-delayed (6+ 
months). Notably, while acute and early-delayed damage seems to 
be usually transient, late-delayed damage is usually permanent. This 
progressive decline affects the physical and mental health of long-
term survivors and impairs their quality of life (Greene-Schloesser 
et al., 2012). Late-delayed cognitive impairment currently occurs in 
50-90% of survivors (Johannesen, Lien, Hole, & Lote, 2003; Meyers 
& Brown, 2006), and this population is increasing with RT advance-
ment (Krex et al., 2007; Weller et al., 2005). Besides high doses 
(e.g., 60 Gy total) known to be dangerous, lower doses (e.g., 20 
Gy total) have been reported to cause late-delayed damage as well 
(Chapman et al., 2012). Therefore, information on regional WM sen-
sitivity to RT dosage in the long-term is crucial to the RT planning 
and patient well-being. The fact that current clinical protocols are 
not pragmatically informed by these findings is worthy of attention. 

Diffusion MRI (dMRI) has proven to be a useful non-invasive im-
aging technique to study WM structure in the brain in the past years. 
The fundamental principle behind dMRI is that the Brownian mo-
tion of water molecules that is dependent on the surrounding tissue 
structure can be imaged. As opposed to grey matter (GM) where the 
structures tend to be more spherical or isotropic, WM structures tend 
to be more elongated or anisotropic. This is reflected in the diffusion 
metrics, making the technique the most sensitive to WM anatomy 
(for comprehensive descriptions see Jones, 2010; Basser & Jones, 
2002; Jones & Leemans, 2011). Neuro-oncological research has 
placed dMRI as a potential technique for tumor diagnosis (Kono et 
al., 2001), surgical planning (Nimsky et al., 2005a, 2005b), pre-treat-
ment prediction of tumor response (Mardor et al., 2004), monitoring 
early efficacy of treatment (Chenevert et al., 2000), early WM dam-
age post-radiation (Kumar et al., 2008; Nagesh et al., 2008; Price 
et al., 2003), and more recently late-delayed effects of RT on WM 
(Chapman et al., 2012; Connor et al., 2016, 2017; Zhu et al., 2016). 

Thus, we aimed to build upon the recent relevant findings and 
study the long-term effects of brain RT on WM structures using 
dMRI. Specifically, we were interested in how the susceptibility of 
WM structures to radiation varies across regions and dose levels 
on the long-term.

METHODS AND MATERIALS
Sample and treatment (see Table 1 for an overview)

The sample consisted of 38 patients (20 females) who were 
treated at the University of Texas MD Anderson Cancer Center, 
Houston, Texas. The dataset showed heterogeneity on several lev-
els, including age (i.e., range 24-88, Mdn = 57), pathology (glioblas-
toma – 62%), anatomical location of tumor, type of surgery, radiation 
technique (IMRT – 74%), dosage (60Gy in 30 fractions – 59%), and 
chemotherapy (Temodar – 64%). 

All patients without any MRI / dMRI scans post-RT were exclud-
ed from the final analysis (N = 6), resulting in analyzable data from 
32 patients.

CT acquisition
The 38 baseline CT scans (used for RT planning) were acquired 

on a Philips Brilliance Big Bore scanner, with a tube potential of 120 
kVp, using a matrix size of 512 × 512 × 87 and 0.98 × 0.98 × 3.0 
mm voxel size.

MRI acquisition (see Table 2 in Appendix for an overview)
MR imaging was acquired at multiple timepoints for each patient: 

pre-operative, post-operative pre-RT, and post-RT longitudinally 
(see Table 3 in Appendix for an overview). The dataset included 
393 usable MRI / dMRI scans (range 2-43, Mdn = 8 per patient). 

The MRI acquisition used a T1-weighted sequence on a GE 
Medical Systems scanner of type Signa HDxt in 91% of cases (SIG-
NA EXCITE - 5%; Signa HDx - 4%; Optima MR450w - 1%) with an 
8HRBRAIN coil in 97% of cases, 256 × 256 matrix size and 220 × 
220 mm2 field of view (FOV). The other acquisition settings showed 
greater heterogeneity both between and within patients in terms of 
field strength (i.e., 1.5T - 52%, 3T - 48%), TE, TR, and voxel dimen-
sions (i.e., 0.85 × 0.85 × 6.5 mm3 - 57%, 0.85 × 0.85 × 3.5 mm3 
- 35%, varied for the rest). 

The dMRI images were acquired using 27 gradient directions 
with a diffusion weighting factor of b = 1200 s/mm2 in 93% of cases 
and b = 1000 s/mm2 for the rest, with one non-diffusion weighted 
gradient direction of b = 0 s/mm2 (see Figure 1) .

The diffusion data was processed using the MATLAB-based 
(MATLAB Release 2014b, The MathWorks, Inc., Natick, MA) soft-
ware ExploreDTI (Leemans, Jeurissen, Sijbers, & Jones, 2009). 

To increase registration performance and reduce computational 
power, we designed a cropping algorithm based on the standard-
ized Hounsfield scaling of CT acquisition (i.e., with values around 
-1000 for air, 0 for water and 200+ for bone; see also Feeman, 2010) 
that outputs a bounding box of the brain. The same cropping set-
tings were used for the relevant dose map for each patient (i.e., 
having the dose map in the same native space).  

Then, the DWI data at each timepoint was corrected for motion 
and eddy-current distortions (with the b = 0 s/mm2 image as the 
reference for the latter) and registered to the CT space using rig-
id registration based on mutual information (Elastix; Klein, Staring, 
Murphy, Viergever, & Pluim, 2010). The quality and spatial align-
ment of registration was visually inspected (i.e., overlays, movie 
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Figure 1. Schema of the dMRI analysis pipeline.

loops, physically implausible signal maps, residual maps; also see 
Leemans & Jones, 2009; Tournier, Mori, & Leemans, 2011; Vos et 
al., 2017). Initially, this registration step was planned to use the MRI 
images at each timepoint as targets (to take advantage of the an-
atomical contrast information), but the heterogeneity in MRI acqui-
sition was simply too high (as described previously). Nevertheless, 
registering to CT space proved to be both feasible and adequate 
quality-wise. 

Following, a robust estimation of the diffusion tensor (DTI) was 
done with the in-house algorithm REKINDLE (robust extraction of 
kurtosis indices with linear estimation; Tax, Otte, Viergever, Dijkhu-
izen, & Leemans, 2015).

We then performed an atlas-based ROI analysis (Mori et al., 
2008) on the diffusion data by warping the WM template in MNI152 
(Montreal Neurological Institute) space from FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/) on the individual scans. This method 
provided DTI metrics based on pre-defined volumetric ROIs in the 
pre-registered native space, aiming for a high spatial alignment be-
tween anatomical and scalar data for each datapoint. As the dose 
maps were also in the native space, all relevant information (i.e., 
ROI delineation, ROI volume, DTI metrics and RT dose) was avail-
able in the same space. 

Therefore, we computed the following metrics per ROI: average 
fractional anisotropy (FA; ranging from 0 to 1, +SD), average mean 
diffusivity (MD; multiplied by 10k, +SD), average axial diffusivity 
(AD; multiplied by 10k, +SD), average radial diffusivity (RD; multi-

plied by 10k, +SD), volume (in mm3), mean dose (+SD), max dose 
(+SD), and median dose (+SD). 

To avoid the bias of remaining cancerous tissue or liquid (i.e., 
post-operatively) on the DTI metrics, all ROIs overlapping the tumor 
location were entirely excluded manually (N = 301; M = 10 per pa-
tient; see Figure 2). 

EXPLORATORY RESULTS
For a proof of concept, we selected data from one patient with 

homogeneous acquisition settings (i.e., field strength, voxel dimen-
sions, bvalue, etc.). Then, we applied a dichotomous selection be-
tween WM ROIs that received a low mean dose (i.e., lower than 

Figure 2. Atlas labels overlaid on CT for one patient, used for the manual exclusion of ROIs 
overlapping the tumor location.

Figure 3. Comparing the change in FA between WM receiving low (blue) and high (red) 
mean RT dose. The dashed lines represent FA of individual ROIs, while the solid lines 
represent the average FA across ROIs, per group. overlapping the tumor location.

10Gy; N = 7) and a high mean dose (i.e., higher than 40Gy; N = 5) 
and investigated the changes between the two groups in FA, MD 
and volume. No statistical analysis was performed at this point. 

FA showed a stronger decreasing trend in WM that received 
higher doses compared to WM that received lower doses between 
the pre- and post-RT assessments. Across time, the trend was sim-
ilar between groups, but a clear shift in FA amplitude was observed 
(i.e., lower FA at higher doses; see Figure 3).

MD showed a clear increasing trend in WM that received higher 

Figure 4. Comparing the change in MD between WM receiving low (blue) and high (red) 
mean RT dose. The dashed lines represent MD of individual ROIs, while the solid lines 
represent the average MD across ROIs, per group.

doses, compared to WM that received lower doses. Once again, this 
was the most evident between the pre- and post-RT assessments, 
but persisted in time (see Figure 4).

The volume of ROIs showed variability (i.e., up to 60-80% 
change) both within and between patients. No clear trend in relation 

Figure 5. Comparing the change in volume between WM receiving low (blue) and high (red) 
mean RT dose. The dashed lines represent volume of individual ROIs, while the solid lines 
represent the average volume across ROIs, per group. mean RT dose. The dashed lines 
represent MD of individual ROIs, while the solid lines represent the average MD across 
ROIs, per group.

to RT dose was observed, but while no ROIs showed a decrease in 
volume in the lower dose group, several ROIs showed shrinkage in 

the higher dose group (see Figure 5).

DISCUSSION
First, the fact that the volume of individual WM ROIs is chang-

ing in time due to RT has been neglected in the literature. To our 
interpretation, this is partly a biological phenomenon where the ac-
tual tissue volume is changing, and partly an imaging acquisition 
phenomenon where the heterogeneity of acquisition settings leads 
to a change in volume. Notably, the results show that even with ho-
mogeneous acquisition settings, the change in volume is relevant. 

Volume change in brain structures has been of interest espe-
cially because of its potential link to cognitive functioning, such as 
a volume-memory relationship in the hippocampus (see Van Pet-
ten, 2004 for a review). RT-related changes in hippocampal volume 
seem to be consistent, show a dose-dependency, and correlate with 
follow-up memory assessment, making volume an important bio-
marker (Blomstrand, Kalm, Grandér, Björk-Eriksson, & Blomgren, 
2014; Ma et al., 2017; Nolen et al., 2016; Seibert et al., 2017). 

Moreover, as established in the last years, partial volume effects 
(PVE) have an influence on the diffusion metrics (Alexander, Hasan, 
Lazar, Tsuruda, & Parker, 2001). The principle behind PVE is that 
at tissue interfaces (e.g., CSF – WM), the limited imaging resolution 
of a voxel will include a mixture of tissue types, leading to measur-
ing different anatomical structures which cannot be separated. Crit-
ically, Vos et al. (2011) demonstrated that the thickness, structure, 
orientation, and curvature of a WM bundle significantly modulates 
the PVE (for a representation of the phenomenon see Figure 6, with 
permission from Vos et al., 2011). 

Therefore, besides the volume change per se being important 
functionally, the volume change of WM structures observed here 
modulates the respective PVE, in turn varying the DTI metrics. Anal-
yses failing to acknowledge this effect are prone to error. To our 
knowledge, previous works on regional WM sensitivity to RT discuss 
volumes within ROIs receiving certain dose levels (e.g., Chapman et 
al., 2012; Connor et al., 2017; Zhu et al., 2016), or aim to avoid PVE 
by restricting the masking to connected voxels that only include WM 
structure (e.g., Connor et al., 2016), but none has accounted for the 
volume change effect described above.

Second, the effects of RT dosage on the DTI metrics seem to be 
consistent with most of the literature. Specifically, higher doses lead 
to a steeper decrease in FA and increase in MD, especially in the 
early-delayed timeframe. The persistent trend across time in MD is 
informative about the slow progressive WM change in the late-de-
layed timeframe. The similar trend, but amplitude shift observed in 
FA is also interesting, and could be interpreted as meaning that re-
gions where higher doses are prescribed are already more affected 
by cancerous tissue infiltration. Biologically, the decrease in FA and 
increase in MD in this dose-tissue context most probably translate to 
higher dosage causing a loss of structure (i.e., higher percentage of 
liquid) in the affected WM structures. As expected, variability in the 
way RT dose influences DTI metrics can be observed both between 
patients and between WM structures. However, once again, these 
results need to be verified after accounting for the modulating effect 
of volume change. 
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Third, we hope to have proven here that by using an adequate 
and robust pipeline tuned for typical clinical data, it is feasible to 
study detailed anatomical changes longitudinally following radiation 
treatment. The key of the analysis was having all relevant informa-
tion in the same (native) space. To our surprise, using the CT space 
instead of the MRI space as registration target for the DWI data 
proved to be satisfactory. Still, we aim for a conservative approach 
in anatomical (e.g., demyelination, inflammation) and cognitive 
(e.g., causing dementia) interpretation due to the limitations in data 
acquisition and quality, and the exploratory nature of the results.

FUTURE DIRECTIONS
We are currently working on a similar analysis as presented 

above but including the whole spectrum of RT dosage across WM 
ROIs and patients. Then, we plan a large-scale statistical inference 
modelling the slopes (β) of change in DTI metrics per increase unit 
of dose (Gy; similar but simpler to the one described in Zhu et al., 
2016). One of the main aims of the analysis will be to account for 
(i.e., regress out) the effect of volume change described earlier and 
so quantify its influence on the results. Generally, research in the 
field should aim for a robust analysis pipeline and proceed with care 
regarding strong anatomical and cognitive interpretation, giving the 
typical clinical data quality. 

Clinically, the dMRI sequence has proven to be insightful in neu-
ro-oncological settings (as described previously), including longitudi-
nal dose-tissue interaction effects following RT (as described here). 
Therefore, we argue that it should be included in the standard ac-
quisition protocol for treatment of brain cancer, and that WM should 
be included in the guidelines of radiation planning, complementing 
the established organs at risk. The acquisition protocol should be 
informed by the limitations pointed out in research, such as less 
heterogeneity in scanner settings, more isotropic voxel dimensions, 

and adequate b-value and gradient settings.
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F
or thousands of years, humans have shown a tremendous amount of interest in the 
brain and its relation to the mind. Examples from Ancient Greece include the physi-
cian Hippocrates (460-370 BC), who discussed epilepsy as a disturbance of the brain, 
and philosopher Plato (428-348 BC), who believed the brain to be the seat of mental 
processes. Over the past 200 years, neuroscience has developed into a rich interdisci-

plinary research field, guided by the constant evolution of neuroscientific techniques. Let us take 
you back in time as we discuss the development of some of the most revolutionary neuroscientific 
techniques, and how they have contributed to our understanding of the brain. 

by Rose Nasrawi  
      & Iris Bosch

FINDING OUR WAY 
THROUGH THE BRAIN

The evolution of neuroscientific methods

MEASURING THE BRAIN
In order to understand how the brain functions, several methods 
have been developed that measure brain activity, in one way or an-
other. Two of the most widely used methods are the electroenceph-
alogram (EEG) and the magnetoencephalogram (MEG), first used 
on humans in 1929 and 1972 respectively. Synchronous post-syn-
aptic potentials from spatially aligned pyramidal cells in the cortex 
create an electric and magnetic field at the skull. Changes in this 
electric field are measured with EEG, while changes in the mag-
netic field are measured with MEG. The high temporal resolution 
of EEG and MEG make both techniques very valuable in cognitive 
neuroscience: EEG/MEG signals can provide insights into dynamic 
brain processes responsible for specific cognitive functions on a mil-
lisecond time scale (Lopes da Silva, 2013). One of the main down-
sides of the techniques, especially regarding EEG, is the low spatial 
resolution. Electrical signals from neurons are altered as they trav-
el through the brain tissue towards electrodes placed on the scalp 
for measuring electrical activity. This causes signals to spread out, 
making it complex to infer where each signal came from (Woodman, 
2010).

Magnetic Resonance Imaging (MRI) overcomes the problem of 
spatial localisation. Structural MRI, performed on a human for the 
first time in 1977, enables neuroscientists to visualise the structure 
of a person’s brain. MRI uses a strong magnetic field, magnetic field 
gradients, and radio waves to generate images of the human brain, 
making use of the magnetic properties of hydrogen protons. With 
the development of ultra-high field MRI (also referred to as 7-Tesla 
MRI), in vivo neuroimaging has flourished: it has enabled visualisa-
tion of the human brain in great detail, especially with regard to the 
sub-cortex. There are many varieties to MRI, including functional 
MRI (fMRI), diffusion MRI (dMRI), and quantitative MRI (qMRI). Due 
to its high spatial resolution, MRI has greatly contributed to our un-
derstanding of brain structure, and how this structure gives rise to 
cognition (Logothetis, 2009). 

The development of microscopy is another great contribution to 
how scientists are able to image the brain and its structures. Rang-
ing from the inventions of Antoni van Leeuwenhoek, the first light 
microscope to the more advanced (fluorescence) microscopes used 
today, microscopes have been essential for neuroscience disci-
plines. Of all of these inventions, the development of the two-pho-
ton excitation microscope in 1990 especially improved fluorescence 
microscopy. Fluorescence microscopy is widely used because of 
the contrast it can generate when imaging the brain, in combination 
with high specificity and sensitivity. As the name reveals, two-pho-
ton excitation microscopy uses two photons, instead of one, and 
only half the illumination energy (red instead of ultraviolet light) to 
excite a fluorophore. A fluorophore is a fluorescent chemical com-
pound with the ability to re-emit light. The use of two photons has 
several advantages that are at the basis for the enduring popularity 
of the technique. First, the scatter of these relatively low energy rays 
causes less damage to brain tissue. Second, in order to excite the 
fluorophore, both photons need to reach it at the same time, mean-
ing only that small fraction of tissue, where the photons are most 
concentrated, can be excited. This reduces out-of-focus background 
fluorescence and enables a whole new level of precision (Svobo-
da & Yasuda, 2006). Two-photon microscopy excels especially at 
three-dimensional optional sectioning and imaging live brain tissue, 
thereby flourishing fluorescence microscopy to a great extent. 

CONTROLLING THE BRAIN
Apart from passively measuring brain activity, a lot of knowledge 
is gained by direct manipulation of the brain through stimulation or 
inhibition. The first neuroscientific method to directly stimulate the 
brain in a non-invasive way was transcranial direct-current stimula-
tion (tDCS). In 1801, Giovanni Aldini successfully incorporated tDCS 
for the first time to improve the mood of melancholic patients. With 
tDCS, a constant direct current is applied to the skull via electrodes, 
leading to stimulation of neurons in the cortex. A similar, more re-
cent technique is transcranial magnetic stimulation (TMS), first used 

by Anthony Barker around 1985. TMS acts by applying a magnetic 
field to the skull that causes an electric current to flow in the targeted 
brain region. Over the past 20 years, interest in transcranial stimu-
lation techniques has increased, especially within clinical settings. 
tDCS and TMS have been shown to have beneficial effects in a wide 
range of diseases (e.g., epilepsy, stroke, chronic depression, and 
addiction). Both tDCS and TMS do not have the ability to achieve 
long-term influences on the brain (Stagg & Nitsche, 2011). Although 
this is an advantage in experimental settings, it becomes a strong 
disadvantage in clinical settings.

But then there was light!  Since 2005, optogenetics has trans-
formed the field of neuroscience by allowing researchers to control 
the signalling of specific neurons. Genetically modified viruses can 
be used to make ion channels of interest light-sensitive. The activity 
of these neurons can then be switched on and off with bursts of 
light (Deisseroth, 2011; Häusser, 2014). Optogenetics was soon fol-
lowed by the development of chemogenetics. Chemogenetics can, 
through the use of chemically engineered receptors and exogenous 
ligands specific to that receptor, control neuronal signalling as well 
(Roth, 2016). Both methods enable researchers to control specif-
ic neurons within neuronal networks in vivo with a higher spatial 
and temporal specificity than ever. In animal experiments, flipping 
these neural switches has provided much knowledge on different 
brain networks and how they relate to behaviour and cognition. Re-
searchers have for example been able to artificially generate a false 
fear-memory, using optogenetics (Ramirez, Liu, Lin, Suh, Pignatelli, 
Redondo et al., 2013). 

Both methods have also already found their way outside of the 
lab. For example, optogenetics pioneer Karl Deisseroth started a 
company called Circuit Therapeutics in 2010, to pursue clinical trials 
using optogenetics to treat neurological diseases. It is only a matter 
of time until opto- and chemogenetics will follow techniques such as 
TMS to treat diseases. 

FUTURE PERSPECTIVE
Over the past two decades, the field of neuroscience has evolved 

into a rich, broad, and interdisciplinary research field. In this brief 
review, we have tried to demonstrate how the development of neu-
roscientific techniques has contributed to this evolution. It is import-
ant to note, however, that the discussed methodologies are only 
the tip of the iceberg, with many neuroscientific methods remain-
ing undiscussed. Nonetheless, it has become clear that the devel-
opment of each of the discussed methods has contributed to our 
understanding of the brain, at different organisational levels: from 
single-cell recordings to connectivity estimates. It is our vision that 
future research in the field of neuroscience will strongly benefit from 
multi-modal research approaches. A clear example of this is the 
Human Connectome Project (HCP), which uses a multi-modal re-
search approach to generate “a comprehensive structural descrip-
tion of the networks of elements and connections forming the human 
brain” (Sporns, 2011). The flaw of one research technique can often 
be the strength of another. By combining research approaches, we 
can obtain a more complete picture of the brain in its full glory.
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ABSTRACT
The empirical literature on embodied semantics (i.e. whether sensory-motor systems contribute to semantic processing) is inconsistent 
when it comes to the timing and localization of effects; while fMRI, the method of choice in most positive findings in the literature, can offer 
high spatial resolution, it lacks the temporal precision required to distinguish between semantics and non-causal effects such as mental im-
agery or spreading activation. While EEG and MEG do offer high temporal resolution, physical constraints limit unambiguous localization of 
effects. To circumvent this issue, we investigated whether the Auditory Steady-State Response (ASSR) and Visual Gamma Band Response 
(VGBR), known to originate in primary auditory and visual cortex respectively, are modulated by semantics. Subjects were simultaneously 
presented with an annular grating inducing VGBR and modulated sine wave evoking ASSR, after which single words from different semantic 
categories (auditory, visual, action and abstract) were presented visually. We hypothesized an interaction between semantic category and 
response type (ASSR/VGBR) for auditory and visual words specifically, such that visual words would modulate VGBR differently than would 
auditory words, and vice versa for the modulation of ASSR.
Time-frequency analysis revealed that VGBR was strong and consistent across participants, whereas ASSR was less stable. We did not 
find evidence for the hypothesized cross-over effect between semantics and response type. Motivated by the disappointing ASSR power the 
effect of semantics on VGBR was investigated separately, which was also not significant. We did find a consistent dip in VGBR power after 
word onset. We conclude that auditory steady-state response and visual gamma band response are not modulated by semantics. Three 
possible explanations for this finding are discussed: sensory cortices are not involved in semantic processing, primary sensory cortices are 
not involved in semantic processing, or the neuronal populations generating steady-state and oscillatory responses within primary sensory 
cortices do not overlap with the neural populations involved in meaning representation. 

KEYWORDS
EEG, MEG, gamma band, vision, hearing, semantics

INTRODUCTION
Embodied semantics is the theory that addresses the question 

of how meaning is represented in the human brain. According to 
this theory, knowledge representation is not amodal and abstract, 
but grounded in systems of perception and action (Barsalou, 2003, 
2008; Fischer & Zwaan, 2008; Kiefer & Pulvermüller, 2012). The 
empirical literature on embodied semantics has mostly been fo-
cused around associations between sensory-motor brain areas and 
lexical semantic processing (Hauk & Tschentscher, 2013), with the 
majority of positive neuroimaging results coming from fMRI (Hauk, 
2016). Using fMRI, researchers have found somatotopic activation 
of motor cortex during language comprehension (for a review, see 
e.g. Pulvermüller, 2013), as well as category-specific activation for 
visual (e.g. Goldberg, Perfetti, & Schneider, 2006; Simmons et al., 
2007) and auditory domains (e.g. Kiefer, Sim, Herrnberger, Grothe, 
& Hoenig, 2008). However, while fMRI can – in principle – localize 
effects unambiguously to specific sensory-motor areas (e.g. prima-
ry motor cortex or V1), it is not clear whether these effects reflect 
semantic processes, mental imagery or spreading activation (Mach-
ery, 2007; Mahon & Caramazza, 2008). The accurate timing infor-
mation provided by EEG/MEG offers a potential distinction between 
imagery and semantics (see Hauk, 2016: ‘the earlier a semantic 
effect occurs, the less likely it is to reflect mental imagery.’). None-
theless, unambiguous localization of subtle effects linking semantics 
to primary sensory-motor areas using EEG/MEG is problematic due 
to the low spatial resolution of these methods: the inverse problem, 
calculating the magnetic or electric sources that generate the EEG/
MEG signals that we measure outside the head, has no unique solu-
tion. This is because any number of distributions of current sources 
in the brain can result in the same measured signal. Although the 
problem can be constrained by making certain assumptions, such 
as in single-dipole fitting (Tuomisto, Hari, Katila, Poutanen, & Var-
pula, 1983), the spatial resolution of EEG and MEG remains limited. 

The current study describes an attempt to ‘work around’ this 
trade-off between spatial and temporal resolution. We used a com-
bined EEG/MEG approach, targeting the Visual Gamma Band Re-
sponse (VGBR) (e.g. Perry, Randle, Koelewijn, Routley, & Singh, 
2015) and Auditory Steady-State Response (ASSR) (e.g. Roß, 
Borgmann, Draganova, Roberts, & Pantev, 2000), known to orig-
inate in primary visual and auditory cortex respectively (See Box 
1 for some background information about the VGBR and ASSR). 
Tracking these signals with EEG/MEG offers millisecond precision, 
whilst the nature of the response itself means that we do not have 
to rely on source estimation to localize it. To try to establish wheth-
er visual and auditory cortices are involved in the representation 
of meaning, we were interested to see whether these signals were 
modulated differentially by the semantic processing of auditory and 
visual concepts. To this end, we presented subjects with stimuli 
generating ASSR and VGBR simultaneously, during which single 
words from different semantic categories were presented. We then 
measured the effect of the presentation of these words on the power 
of the ASSR and VGBR in different time windows, reasoning that 
an early interaction between semantic category and brain response 

would provide novel evidence for the involvement of primary senso-
ry cortices in semantics. The great temporal precision of EEG/MEG 
allowed to potentially distinguish between mental imagery and se-
mantic processing, while targeting VGBR and ASSR eliminated the 
complication of EEG/MEG source estimation to pinpoint the effect to 
primary visual and auditory cortex.

Another point of discussion in the literature on embodied seman-
tics is the degree to which the involvement of sensorimotor areas 
for semantics is dependent on task demands. For instance, Kief-
er & Pulvermüller (2012) argued that semantic processing in the 
motor system happens ‘early and automatically’, implying that task 
demands should not significantly modulate these effects. Some 
studies, however, have found evidence for flexible and context-de-
pendent semantic processing (Chen, Davis, Pulvermüller, & Hauk, 
2015; Rogers, Hocking, Mechelli, Patterson, & Price, 2005; Van 
Dam, Van Dijk, Bekkering, & Rueschemeyer, 2012). This question 
could be addressed by comparing the modulation of brain respons-
es in two different tasks, differing in the ‘depth’ of semantic process-
ing required. 

Preregistration
Some of the inconsistencies in previous literature may be ex-

plained by confirmation and publication bias (Hauk & Tschentscher, 
2013). We therefore opted to pre-register our planned analysis 
strategy (see Wagenmakers, Wetzels, Borsboom, van der Maas, & 
Kievit, 2012). Since the time frame of this project did not allow for 
peer-reviewed preregistration options, we chose to preregister with 
the Open Science Framework. The preregistration can be found at 
https://osf.io/e3djb/ (click ‘View Registration Form’).

METHODS
Inducing VGBR and ASSR

To induce visual gamma band responses (VGBR), participants 
were presented with an annular grating (concentric circles) with a 
spatial frequency of 3 cycles per degree of visual angle and maximal 
contrast, based on Perry et al. (2015) (see Figure 1, left), including 
a fixation dot in the centre. Based on Muthukumaraswamy & Singh 
(2013), we expected a maximal gamma band response between 50 
and 80 Hz. To evoke an auditory steady-state response (ASSR), 
we presented a tone with a carrier frequency of 250 Hz modulated 
by a frequency of 35 Hz, with a short ramp at the onset (see Figure 
1, right). This was close to the optimum modulation frequency of 40 
Hz described by Roß, Borgmann, Draganova, Roberts, & Pantev 
(2000), but by evoking an ASSR with a slightly lower frequency we 
attempted to avoid overlap with the frequency range of the VGBR.

Word stimuli
The stimulus set included 60 words referring to visual concepts 

(e.g. ‘gold’) and 60 words referring to auditory concepts (e.g. ‘whis-
tle’), as well as 60 hand-related action words (e.g. ‘throw’) and 60 
abstract words (e.g. ‘law’), selected from a prior rating study employ-
ing a different set of participants. The stimuli were matched on word 
length, orthographic neighbourhood size, frequency of word form, 
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Box 1 : Background of ASSR and VGBR

Auditory Steady-State Response
The Auditory Steady-State Response is a cerebral evoked response 

to rapid sequences of periodic auditory stimuli, such that the successive 
evoked responses are overlapping. This creates a response whose 
frequency components stay stable over time in terms of amplitude and 
phase (Roß et al., 2000). In the present study this response is elicited by 
an amplitude-modulated tone, but it can also be evoked by tone pulses or 
clicks (Müller et al., 2009). Because ASSR is also present near hearing 
threshold levels, is easy to identify and has a relatively big amplitude, 
it can be used in clinical audiology to estimate hearing sensitivity (see 
Korczak, Smart, Delgado, Strobel, & Bradford (2012) for an overview of 
ASSR in the clinical practice). Because the oscillations are phase-locked 
to the frequency of the modulated tone, analysis can be based on the 
pre-determined modulation frequency. The biggest signal amplitude is 
found using modulation frequencies around 40 Hz (Roß et al., 2000). 
Multiple studies have pinpointed the ASSR to primary auditory cortex 
(Engelien, Schulz, Ross, Arolt, & Pantev, 2000; Pantev, Roberts, Elbert, 

Roß, & Wienbruch, 1996; Roß et al., 2003).

Visual Gamma-Band Response
There is considerable variability in the naming conventions of higher 

frequency brain oscillations; in the literature, gamma band can range 
from 30 to 600 Hz (Uhlhaas, Pipa, Neuenschwander, Wibral, & Singer, 
2011). The visual gamma band responses we were interested in can 
be induced by presenting visual gratings, resulting in brain oscillations 
with a peak frequency between 50-80 Hz. (S.D. Muthukumaraswamy & 
Singh, 2013), where the amplitude of the response is highly dependent 
on stimulus properties, such as size (Perry et al., 2013), contrast (Hall 
et al., 2005), stimulus type, visual field coverage and motion ((S.D. 
Muthukumaraswamy & Singh, 2013). Evidence that these oscillations are 
generating in primary visual cortex comes from invasive animal studies 
(Eckhorn, Frien, Bauer, Woelbern, & Kehr, 1993; Gail, Brinksmeyer, & 
Eckhorn, 2000; Rols, Tallon-Baudry, Girard, Bertrand, & Bullier, 2001) 
and electrophysiological studies in humans (Hall et al., 2005; Hoogen-
boom, Schoffelen, Oostenveld, Parkes, & Fries, 2006) The VGBR has 
been found to be modulated by various cognitive processes, such as fea-
ture binding, attention and arousal, but relatively little is known about its 
functional role (Busch, Debener, Kranczioch, Engel, & Herrmann, 2004).

and unconstrained bi-/trigram frequencies using Match software 
(Van Casteren & Davis, 2007). This stimulus set was checked for 
unfamiliar and ambiguous words by two native speakers of English, 
after which further matching was done by hand. All words were rat-
ed on how vision-, sound-, action-related and concrete they were on 
a 7-point scale (see Figure 2). Paired t-tests revealed that the av-
erage ratings for words in their corresponding semantic categories 
(e.g. rating of vision-relatedness for words in the ‘visual’ category) 
were significantly higher than the other ratings in that category (p < 
0.01 for all comparisons), as desired. Abstract words dropped in the 
matching process were used for filler trials that were excluded from 
any further analysis (see Trial outline).

We employed two experimental tasks, differing in the ‘depth’ of 
the semantic processing required: semantic target detection (TD) 

and lexical decision (LD), where we assumed the TD task to be 
more semantically demanding. In this task, 24 additional target 
words were included (10% of total), to which our participants had 
to respond by pressing a button with their left index finger. These 
were words referring to edible products containing flour and/or milk 
(e.g. ‘cake’). In the LD task, 24 (10%) orthographically plausible but 
meaningless pseudowords were added, which also had to be re-
sponded to by button press. Target words and pseudowords were 
matched to the other stimuli on word length, word form frequency 
(only target words), orthographic neighbourhood size and uncon-
strained bi- and trigram frequency (see Table 1). A one-way ANOVA 
did not reveal any significant differences between the categories.

Fig. 1 Left: Illustration of the annular grating inducing VGBR. Right: Waveform of the first 300 ms of the ASSR-evoking tone.

Participants
Four pilot studies were run to test the set-up. After that, twenty 

healthy participants (age range: 19-40, mean age: 26.5, 12 females, 
8 males) were recruited. All subjects were native speakers of En-
glish with no history of neurological, psychiatric or neurodevelop-
mental disorders. They all had normal or corrected-to-normal vision 
and hearing. Nineteen were right-handed, one ambidextrous (Old-
field, 1971). Participants were paid £30 for their time.

Procedure
After EEG setup and head digitisation (see below), participants 

were seated under the MEG helmet and fitted with earphones. The 
visual stimuli were presented through a projector outside the mag-
netically shielded room, the projected picture being approximately 
37 by 49 cm at 129 cm distance from the helmet. The sound volume 
level was checked by playing the ASSR-evoking sound continuous-
ly, starting on the same volume level for each participant. Subjects 
were asked to indicate whether they heard the sound clearly, and 
whether the volume was the same in both ears. If they found the 
volume uncomfortably loud, it was reduced until they indicated it 
was at a comfortable level. Participants were instructed to use their 
left index or middle finger to press one button on a button box placed 
on their lap. Instructions were given verbally before each task, after 
which subjects did a practice run. They were given visual feedback 
after each button press during practice only. Before starting the ac-
tual tasks they were reminded of the instructions through text on the 
screen.

Trial outline
The annular gratings and the sounds were presented simultane-

ously, such that we could obtain VGBR and ASSR for identical trials. 
The duration of the fixation screen (grey with a fixation dot) varied 
slightly between trials, between 2.5 and 2.7 s, to prevent oscillato-
ry entrainment with the rhythm of the trials. Participants were then 
presented with an annular grating (spatial frequency 3 Hz, contrast 

100%) covering the whole screen, while simultaneously hearing 
the sound, for 1.7 s. After 700 ms, a word appeared in the centre 
of the grating (black letters in a white textbox, spanning a max-
imum of 1 degree of visual angle) for 150 ms. The duration of 
a single trial was thus between 4.2 and 4.4 s, making one task 
last approximately 21 minutes (excluding breaks). See Fig. 3 for 
a visual timeline of a single trial. Word order within the tasks was 
pseudorandomized. The order of the two different tasks within the 
session was counterbalanced.

Participants were supposed to only press a button in target tri-
als, i.e. a target word in the target detection task and a pseudoword 
in the lexical decision task. Because button presses were quite 
rare, occurring in about 10% of trials, a filler trial was added af-
ter every button press. Participants could take a self-paced break 
approximately every five minutes. After each break, two filler tri-
als were added. Filler stimuli were abstract words dropped in the 
matching process, which were not included in any further analysis. 

After completing the two tasks (TD and LD), participants were 
subjected to a short localiser task in order to obtain ASSRs and 
VGBRs in separate trials and uncontaminated by superimposed 
words. In this localiser task no words were projected on top of 
the grating. Additionally, participants were either presented with 
the grating or with the sound, not simultaneously as in the pre-
vious tasks. We presented 100 trials for each condition (ASSR 
and VGBR). To maintain attention, 10% target trials were added in 
which the fixation dot slightly changed colour for 150 ms. Partici-
pants were instructed to press the button in response to the colour 
change.

The timing of these localiser trials was as follows: a fixation 
screen was presented for 1.5 to 1.7 seconds, then subjects either 
saw the grating or heard the sound for 1.25 s. During target trials, 
a slight colour change in the fixation dot would appear 600 ms after 
the onset of the grating/sound, lasting for 150 ms. SOA therefore 
varied between 2.75 and 2.95 s. Target trials and incorrect trials 

were excluded from further analysis.

Fig. 2 Average ratings per semantic category. To make the graph easier to interpret, the ‘concreteness’ ratings were turned into a rating of ‘abstractness’ by subtracting the ratings from 
the maximum score of 7.
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Table 1. Means and Standard Deviations per Category for Number of Letters, Word Form 
Frequency, Number of Orthographic Neighbours, Bi- and Trigram Frequency

    Category No. Letters
WF 

Frequency
Neighbours

Bigram 
Frequency

Trigram 
Frequency

Auditory

Visual

Action

Abstract

Pseudo

Target

Total

Mean
Std. Deviation

Mean
Std. Deviation

Mean
Std. Deviation

Mean
Std. Deviation

Mean
Std. Deviation

Mean
Std. Deviation

Mean
Std. Deviation

5.13
1.142
4.98

1.282
4.92

1.139
5.42

1.565
5.04
.908
5.38

1.173
5.13

1.261

20.51
54.46
23.30
31.77
21.73
36.32
27.77
41.35

11.36
22.66
22.24
40.44

5.15
4.943
4.92

5.169
5.70

4.774
4.45

4.778
4.54

3.599
4.25

4.346
4.94

4.762

18927
9103.4
17777
8209.3
17455
9469.4
17553
9030.7
17317
7131.2
16047
7787.8
17720
8694.8

1776.1
2213.1
1425.8
1526.8
1555.1
2326.7
1934.6
1695.3
1930.5
1554.6
1604.4
1328.2
1688.6
1887.5

Data acquisition
Data was acquired on an Elekta Neuromag Vectorview system 

(Elekta AB, Stockholm, Sweden), containing 306 sensors (102 mag-
netometers and 204 gradiometers). EEG was acquired simultane-
ously from 70 electrodes mounted on an Easycap (EasyCap GmbH, 
Herrsching, Germany), with the recording reference electrode at-
tached to the nose, and the ground electrode to the left cheek. The 
electrooculogram (EOG) was recorded from electrodes above and 
below the left eye (vertical EOG) and at the outer canthi (horizon-
tal EOG). The sampling rate during data acquisition was 1000 Hz 
and an on-line band pass filter 0.03 to 330 Hz was applied. Prior 
to the EEG/MEG recording, the positions of 5 Head Position Indi-
cator (HPI) coils attached to the EEG cap were digitised in order to 
monitor head position inside the MEG system. In addition, 3 ana-
tomical landmark points (two preauricular points and nasion) as well 
as about 50-100 additional points that cover most of the scalp were 
digitised using a 3Space Isotrak II System (Polhemus, Colchester, 
Vermont, USA) for later co-registration with MRI data. 

Data exclusion
The preregistration states that datasets with less than 50% target 

detection accuracy would be excluded. However, only looking at de-
tection accuracy for target trials can be misleading when these only 
make up 10% of all trials: false alarms, responses when there is no 
target present, would be ignored. Therefore, we opted to express 
response accuracy in d’ (d prime), which is the z-transform of the hit 
rate (the probability of a response when a target is present) minus 
the z-transform of the false alarm rate (the probability of a response 
when no target is present): d^’=z(H)-z(FA). High d’ scores indicate 
high discrimination ability, whereas a d’ near zero indicates perfor-
mance at chance. Since d’ > 1 for all participants in all three tasks, 
no datasets were excluded.

Pre-processing
First, data were subjected to spatio-temporal signal-space sepa-

Fig. 3 Timeline of trials in the target detection (TD) and lexical decision (LD) tasks. Dura-
tions of stimuli are provided below the images.

ration (SSS) implemented in the Maxfilter software (Version 2.2.12) 
of Elekta Neuromag to remove noise generated from sources dis-
tant to the sensor array (Taulu & Kajola, 2005; Taulu & Simola, 
2006). The SSS procedure included movement compensation (lo-
cations recorded every 200 ms), bad channel interpolation, and tem-
poral SSS extension (with default buffer length 10 s and sub-space 
correlation limit 0.98). The origin in the head frame was chosen as 
(0,0,45) mm.

The following steps of analysis were performed in the MNE-Py-
thon software package (Version 0.16) (Gramfort et al. 2014; Gram-
fort et al. 2013). Raw data were visually inspected, and consistent-
ly bad EEG channels were marked and interpolated (in ‘accurate’ 
mode). After interpolation, the average-reference operator was ap-
plied, as well as a notch filter at 50 and 100 Hz (filter length 6600 
samples). Data were then FIR band-pass filtered between 0.1 and 
100 Hz using default settings (filter length 66000 samples, low and 

high band widths 0.1 and 25 Hz, respectively). Independent Compo-
nent Analysis (using the FastICA algorithm, Hyvärinen & Oja (2000)) 
was applied to the filtered data in order to remove eye movement 
artefacts, for those subjects where data were significantly contami-
nated by eye movements (judged by trial rejection rates due to EOG 
channels or frontal EEG channels during averaging and visual in-
spection), which was the case for all but one subject. The ICA proce-
dure provided for the MNE-Python software uses the temporal cor-
relation between ICA components and EOG channels as a rejection 
criterion. The success of the ICA procedure was judged by its effect 
on evoked responses averaged across all epochs.

Data were divided into epochs from -500 ms to 1200 ms around 
the onsets of the visual gratings and steady-state sound stimuli. As 
outlined in the preregistration, we were planning to apply the new 
automated artefact rejection algorithm “Autoreject” (as implemented 
in MNE-Python) (Jas, Engemann, Bekhti, Raimondo, & Gramfort, 
2017). However, this proved to be too time-consuming to implement 
within the scope of this project. Therefore, epochs were rejected 
by using peak-to-peak amplitude thresholds (EEG: > 300 µV, gra-
diometers: > 100 pT, magnetometers: > 5 pT). For two subjects, 
strong ECG signals showing in the EEG/MEG data led to very high 
rejection rates. For these subjects, the thresholds were multiplied 
with a factor 1.5. The quality of the resulting data was judged on 
the evoked response averaged across epochs. Trials with incorrect 

behavioural responses were excluded from further analysis.

Time-Frequency Analysis
Time-frequency analysis was performed using Morlet wavelets 

between 30 and 100 Hz, with a frequency resolution of 1 Hz and 
number of cycles corresponding to half the wavelet frequency. 

Peak channels for further analysis were determined from the lo-
caliser scan, separately for ASSR and VGBR as well as for differ-
ent channel types (magnetometers, gradiometers and EEG). First, 
the ratio of power values from the wavelet analysis with respect to 
pre-stimulus baseline was computed.  For ASSR, those channels 
that showed maximum power ratios for 35 Hz wavelets within the 
time window 350-1000 ms were selected. The first 350 ms were 
omitted in order to avoid contamination from initial evoked respons-
es. For VGBR, we planned to first determine the maximum power 
ratio across all channels, frequencies between 30 and 100 Hz, and 
latencies from 350 to 1000 ms. However, a large portion of EEG 
data contained high-frequency artefacts (probably muscular activity) 
in frontal electrodes. Since EEG is more sensitive to high-frequen-
cy muscle artefacts compared to MEG (Suresh D. Muthukumaras-
wamy, 2013), we chose to limit the possible VGBR peak channels to 
posterior channels in EEG. Also, we narrowed the frequency band 
to 30-70 Hz, based on Perry, Hamandi, Brindley, Muthukumaras-
wamy, & Singh (2013). We then determined peak power across 
channels for the same latency window, averaged across frequen-
cies +/- 5 Hz around the previously determined peak frequency. We 
used five peak channels per channel type. 

Statistical Analysis
Average percent change in power with respect to 300 ms pre-

word onset baseline was computed across time for peak channels 
and frequencies, as described in the section Time-Frequency Anal-

Fig. 4  Left: Evoked responses following word onset at 0 ms per channel type, with topographies at peak latencies. Global field power is plotted in grey at the bottom of each plot.
Right: Global field power of the evoked responses per channel type (magnification of the GFP in the left plots). The time windows chosen for the statistical analysis are 20 ms around 
peak latencies, plus a longer window from 250 - 400 ms capturing the N400.
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ysis. We ran an analysis focused on average amplitudes within 
pre-specified latency ranges. These latency ranges were defined 
similar to previous studies as 20 ms windows around peaks in the 
root-mean square (global field power) of the original word-evoked 
responses, at 100 ms (P1), 150 ms (N1), and 230 ms (N2) after 
word onset. The N1 peak occurred slightly earlier than the expected 
170 ms mentioned in the preregistration, but within the typical peak 
latency range for this component (Callaway & Halliday, 1982). A lon-
ger time window capturing the N400 window was chosen between 
250 and 400 ms. See Figure 4. These word-evoked responses are 
slightly different from conventional ERPs in that the presentation of 
the words overlapped with the visual and auditory stimulation evok-
ing steady-state and visual gamma responses. 

For every latency window, we obtained one value per word cat-
egory (words related to visual and auditory concepts, respectively) 
and channel group (peak channels from ASSR and VGBR, respec-
tively) per condition and subject. These values were subjected to 
a 2-by-2 ANOVA with factors Word Category and Channel Group. 
Based on two recent MEG studies (Mollo, Pulvermuller, & Hauk, 
2016; Moseley, Pulvermuller, & Shtyrov, 2013), we hypothesised 
that the latency window around 170 ms should be the earliest sensi-
tive to word semantics. These analyses were run for the three sen-
sor types separately. 

RESULTS
ASSR and VGBR

Average evoked responses to the sound or grating in the local-
izer scan show that the stimuli were presented and perceived cor-

Fig. 5  Average evoked responses to the onset of the sound (ASSR) or grating (VGBR) in the localizer scan, plotted for each sensor type separately. Topographies are shown for peak 
latencies.

rectly (see Figure 5). Note that, since the steady-state response is 
phase-locked to the stimulus, the 35 Hz response can be seen quite 
clearly in the average evoked response of the ASSR trials.

Time-frequency analysis of ASSR and VGBR in the localiser data 
(as described in Methods) revealed a relatively consistent VGBR 
across participants and channel types, with peak frequencies rang-
ing from 47 to 61 Hz. The ASSR, however, proved more difficult to 
find. Although clearly present in time-frequency plots of the average 
power across subjects, (see Figure 6), it seemed unstable or even 
absent in a significant portion of subjects when plotted individually. 
Also, topographies showed a lateralized effect in some subjects.

This result was surprising, since pilot studies did reveal an ASSR 
for individual subjects within the current paradigm. Given the short 
timeframe of this project and the therefore limited options to explore 
the reasons and possible solutions for the disappointing ASSR 
strength and stability, the data presented here should be regarded 
as preliminary.

Comparing conditions
As outlined in Methods, we looked at the relative change in ASSR 

and VGBR power after word onset, comparing the average power 
change in the visual and auditory condition for peak channels in four 
time windows. Figure 7 shows the percent change in power over the 
entire trial window with respect to a pre-word onset baseline. 

Between grating/sound and word onset, we would not expect to 
see any difference between conditions: all trials were identical up 
to that point. Where the VGBR shows very little variability between 
conditions, the ASSR power already shows relatively large differ-

Fig. 6 Average evoked responses to the onset of the sound (ASSR) or grating (VGBR) in 
the localizer scan, plotted for each sensor type separately. Topographies are shown for 
peak latencies.

Fig. 7 Relative change in power for ASSR (dashed lines) and VGBR (dotted lines) in peak 
channels, normalized to a -300 ms to word onset baseline. The dotted line at -700 ms 
indicates grating/sound onset, word onset is at 0. Red and blue lines indicate the average 
response to visual and auditory words, respectively. Different panels correspond to differ-
ent channel types.

ences between conditions before word onset. This confirms previ-
ous observations about the strength and stability of the ASSR in our 
data. Figure 8 shows the average response in the auditory (blue 
lines) and visual condition (red lines) for every participant. Whereas 
the VGBR looks very stable across participants, especially for gradi-
ometers, the ASSR does not. Surprisingly, for some subjects ASSR 
power even seems to go down after the onset of the sound, which of 
course should not be the case.

We hypothesized that there would be an interaction between 
Word Category and Response type (ASSR or VGBR) after word 
onset, where the strongest evidence for embodied semantics would 
be an effect in early time windows. From Figure 7 on the previous 
page, it already becomes apparent that there is no cross-over inter-
action in our data: the average change from baseline in one condi-
tion would have to be higher in one response type and lower in the 
other after word onset. In other words, the red line would have to dip 
below the blue line in one response type, and stay above the blue 
line in the other response type (we did not have a clear hypothesis 
about the direction of the effect, so whether the congruent condi-
tions would lead to a smaller or larger change from baseline). This 
was confirmed by a series of 2 x 2 Anovas after checking for nor-
mality: there was no significant interaction between Word Category 
and Response Type in any time window for the three channel types 
(EEG, gradiometers or magnetometers).

Data from the lexical decision and target detection task were 
combined to test our primary hypothesis. We then investigated 
whether the absence of an effect was due to an interaction being 
present in one paradigm but not the other, by repeating the tests 
for both tasks separately. Again, there was no significant interaction 
between Word Category and Response Type in any time window for 
EEG, gradiometers and magnetometers. 

Given the unreliability of the ASSR we also looked at the modula-
tion of VGBR only, leaving ASSR out of the Anova. The hypothesis 
that visual cortex is involved in semantic processing of visual con-
cepts could still be tested by investigating whether VGBR is modu-
lated differently by visual words compared to other semantic cate-
gories. Figure 9 shows kernel density plots, showing the distribution 
of VGBR power change across participants for every word category. 
This is plotted for the four time windows and the different channel 
types separately. As the highly overlapping curves suggest, Welch’s 
t-tests for every channel type and time window did not reveal any 
significant differences between visual words and auditory, action 
and abstract words (treated as one group). 

 These plots do show that there is a consistent dip in VGBR pow-
er after word onset across participants and channel types, meaning 
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that projecting a word on top of the annular grating decreases VGBR 
strength.

DISCUSSION
In this study we investigated whether auditory steady-state re-

sponse (ASSR) and visual gamma band response (VGBR) are 
modulated by the semantic processing of single words. Employing 
a novel paradigm, we presented ASSR- and VGBR-evoking stimuli 
simultaneously before superimposing words from different semantic 
categories on the visual stimulus. We hypothesized that the pro-
cessing of visual concepts would modulate VGBR power differently 
than would auditory concepts, and we expected the opposite effect 
for the ASSR. The data did not show this expected interaction, nor 
did they show an effect of semantic category on VGBR modula-
tion. Although the visual gamma band response to our experimental 
stimuli was strong across participants, the ASSR did not show the 
same consistency. Since testing the hypothesis is reliant on a stable 
baseline response, results involving the modulation of ASSR should 
be regarded as preliminary. 

Evoking ASSR
The absence of a stable ASSR across participants is interesting 

in itself. The robustness of the auditory steady-state response is 
what makes it useful for clinical purposes (see Box 1), so it is sur-
prising that we failed to find it in all participants.  

In many studies involving ASSR stimulus duration is longer 
than in our set-up (e.g. 200 seconds in Roß, Draganova, Picton, 
& Pantev ( 2003) and Roß et al., (2000)). Although other studies 
successfully investigated ASSR elicited by tones as short as 780 
ms (Kuriki, Kobayashi, Kobayashi, Tanaka, & Uchikawa, 2013) and 
800 ms (Müller, Schlee, Hartmann, Lorenz, & Weisz, 2009), these 

authors do not show whether the response was consistent across 
participants. Though, given the nature of a steady-state response 
being a series of overlapping evoked responses, the amplitude of 
the response remains stable over time (Roß et al., 2000), meaning 
that, in our study, presenting the sound for a longer time before pre-
senting the word probably would not have made any difference in 
power pre-word-onset.

ASSR power can be modulated by selective attention (Bi-
det-Caulet et al., 2007; Müller et al., 2009), especially in the 40 
Hz range (Skosnik, Krishnan, & O’Donnell, 2007). These studies 
showed an enhancement of the response for attended stimuli in one 
ear compared to unattended information in the other ear. Additional-
ly, Müller et al., (2009) showed that responses to unattended stimuli 
were suppressed. However, both attended and unattended stimuli 
were in the same modality in these experiments. This is a big differ-
ence with our design: participants had to focus their attention to the 
visual stimuli in order to perform the tasks, while they could ignore 
the auditory domain completely. This might explain why we found 
a stronger VGBR than ASSR, although, to my knowledge, these 
two responses have not been compared directly in previous studies. 
Roß, Picton, Herdman, & Pantev (2004) do report largely enhanced 
ASSR responses in an auditory task compared to a visual task, but 
they do not specify power in the unattended condition. The previ-
ously mentioned studies also do not report effect size, so it remains 
unclear whether attentional effects can explain this result.

One issue we encountered during testing was a lack of control 
over how loudly participants heard the sound stimuli. The position 
of the earphones inside the ear proved to have a large effect on 
how loudly the sound was heard. Although measures were taken to 
ensure a good and steady fit in each participant (trying earphones in 
different sizes, sometimes taping them to the ear to prevent falling 
out), we had to rely on subjective reporting about the sound volume. 
Auditory evoked responses were present in all subjects, indicating 
that they at least heard something, but it is possible that there was 
still a significant difference in how loudly participants heard the tone, 
or that the earphones moved during the recording. This could ex-
plain the lateralized response we saw in some participants, and it 
potentially adds up to the attentional effects described above to ex-
plain the absence of an ASSR. 

Semantic modulation
We did not find evidence for semantic modulation of VGBR and 

ASSR. We did find that briefly superimposing a word on the annular 
grating caused a decrease in VGBR power. The amplitude of the 
visual gamma response is highly dependent on stimulus properties 
(e.g. Perry et al. (2013)), but this effect of partially and briefly cov-
ering the stimulus has, to my knowledge, not been demonstrated 
before.

One of the motivations for this study was to potentially obtain 
a timeline of the involvement of sensory areas in semantics. As 
outlined in the introduction, this temporal information is essential 
to distinguish between semantics, imagery or spreading activa-
tion by association. However, we did not find an effect in any time 

Fig. 8. Average responses per participant in the visual (in red) and auditory condition (in 
blue), baseline corrected from -300 ms to word onset.

window. There are multiple possible explanations for this finding. 
Firstly, it could be that sensory areas are not involved in semantic 
representations or processes at all. As outlined in the introduction, 
it remains unclear whether previous findings linking sensory-motor 
areas to lexical semantics actually reflect the processing of meaning 
or something else, such as mental imagery or spreading activation. 
However, even if sensory cortices are not involved in semantic pro-
cessing, we might still expect to find this non-causal activation in 
later windows, for instance the 250-400 ms time window. 

The total absence of an effect leaves room for other interpreta-
tions: a second possibility is that meaning representation involves 
sensory areas, but not the primary visual and auditory cortices in 
which VGBR and ASSR originate in particular. This raises the ques-
tion of what ‘embodiment’ really means, and down to what hierarchi-
cal level of processing one would expect sensory-motor systems to 
be involved in semantic processes; an extreme take on embodiment 
might suggest that the processing of visual concepts would involve 
activating the retina, as explained  in Hauk & Tschentscher (2013). 
These authors point out that if one rejects this idea, there is no real 
theoretical reason to stop at primary motor- or sensory cortices ei-
ther. 

Lastly, semantic processing might involve primary sensory areas, 
but the neuronal populations within these areas generating steady-
state responses and gamma oscillations might not overlap with neu-
ronal populations that would be involved in semantics. Although the 
relation between frequency and amplitude of the VGBR and various 
stimulus properties has been studied extensively (see Box 1), any 
hypothesis about the functional role of gamma band oscillations in 
visual cortex remains relatively low-level: for instance, Perry et al. 
(2013) suggest that visual gamma activity reflects GABAergic in-
hibitory processes responsible for suppressing the surrounds of the 
receptive field. Again, this raises the question at what level we start 
talking about ‘embodiment’; how specific is the visual information 
that one activates when processing the word ‘pearl’? Is it specific 
enough to include information about visual field coverage, and if it 
does, does the mental simulation activate surround-suppression, 

regulated by inhibitory neurotransmitters? These dilemmas regard-
ing the definition of ‘embodiment’ have not been resolved as of yet, 
and they will require solid, sophisticated empirical research to en-
tangle.
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Unsupervised scene and place recognition 
based on features extracted from 

pretrained convolutional neural networks

1. INTRODUCTION
When placed in a novel visual environment it is a trivial task for a 

human to make two high-level assessments. Firstly, is this a place 
that I have been to before (place recognition)? Secondly, what type 
of scene am I in – am I in an urban scene, an indoor environment 
or rather a countryside environment (scene recognition)? That place 
recognition is trivial to humans is based on anecdotal observations 
– it is a crucial component of everyday navigation – as human per-
formance data on place recognition tasks is unavailable (Frampton 
& Calway, 2013); for scene recognition it has been shown that hu-
mans consistently outperform all available algorithms (Borji & Itti, 
2014). The synthesis of place and scene recognition performance 
into capable algorithms comes with significant difficulties, partly be-
cause the mechanisms behind both place recognition (Lowry et al., 
2016) and scene recognition (Sharma & Tripp, 2016) in the mamma-
lian visual system are not yet understood.

The synthesis of visual scene and place recognition capabili-

ties has usually been regarded as a task that falls within comput-
er vision, a field that aims to build algorithms that extract relevant 
information from raw image data (Szeliski, 2011). Many of these 
algorithms have in common that they employ a first step of feature 
selection instead of using the whole input signal. The idea behind 
this process is that using such “characteristic features of the signals 
– rather than the signals themselves – [...] improves performance” 
(Wiatowski & Bölcskei, 2015, p. 2) and reduces computational de-
mands (Hira & Gillies, 2015). Much of the earlier successful work in 
machine learning in general, and computer vision in specific, was 
achieved through approaches that rely on engineered features, e.g. 
features generated by the scale-invariant feature transform algo-
rithm (Lowe, 1999). These features, describing local visual features, 
have been applied to a variety of tasks, such as gesture recognition 
(Wang & Wang, 2007), object recognition (Lowe, 1999) and robot 
navigation (Se et al., 2011).

Trainable artificial neural networks (ANNs), i.e. algorithms that 
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were fundamentally inspired by principles of neural computation, 
had been around since the 1950s (Rosenblatt, 1957). It was, howev-
er, only with the recent success of the convolutional neural network 
(CNN) on object recognition challenges like ImageNet (Jia Deng 
et al., 2009) that the promise of neural networks as highly-capable 
computational entities was confirmed (Krizhevsky et al., 2012). In-
terestingly, though, a recent study has shown that the performance 
of a CNN can be consistently, and significantly, improved if the layer 
that computes the classification output is replaced by a linear clas-
sifer such as a support vector machine (Tang, 2013). This has led 
to the statement that the impressive performance of these networks 
on complex tasks – even recently outperforming humans (He et al., 
2016) – is likely to be the result of the superiority of the learned fea-
tures rather than optimality in the inference process.

This finding has led to the suggestion that CNN features might 
be appropriate to be transferred to tasks that the network was not 
initially trained on (Athiwaratkun & Kang, 2015). Attempting to lever-
age ANNs for other tasks is called transfer learning. There are two 
different approaches to transfer learning, besides fully training a 
network from scratch: fine-tuning and feature extraction (Nogueira 
et al., 2016). Fine-tuning entails to retrain the task-specific layers, 
commonly the final fully-connected ones, without adjusting earlier 
layers (Yosinski et al., 2014). Treating a CNN as a feature extractor 
means that the feature activations of a CNN in response to a given 
input are extracted and further processed by different means (Wia-
towski & B¨olcskei, 2015). Whilst fine-tuning requires labelled data, 
using a pretrained CNN as a feature extractor allows CNN features, 
which are trained with labelled data, to be used in contexts where 
labelled data is sparse, or unavailable (Nogueira et al., 2016).

The aim of this study is to assesses whether there exists an al-
gorithm that is capable to simultaneously determine whether new 
visual information represents a known place and to which class of 
previously-presented scenes it belongs. The problem of recognising 
whether a place has been previously seen is integral to autonomous 
navigation; it is akin to the problem of loop closure in the simulta-
neous localisation and mapping approach to navigation, which de-
scribes the aim to recognise a previously-encountered place from a 
different perspective to then update the internal map representation, 
i.e. to close the loop of one’s memorised path (Ho & Newman, 2006). 
A recent study has shown that CNN features extracted from Over-
feat, a CNN trained on ImageNet, are appropriate for loop closure 
when further analysed by a matching algorithm; the results showed 
an immense improvement over features that were generated by a 
generative model (Chen et al., 2014). Data on human performance 
is – to the best of our knowledge – unavailable (Frampton & Calway, 
2013). Hence the feasibility of place recognition with CNN features 
has been backed up empirically; this is, however, not the case for 
scene recognition. It has been shown that a CNN can be trained 
on labelled data stemming from scene recognition databases and 
reach appropriate performance (Zhou et al., 2014) and that this can 
be slightly improved if feature maps extracted from a CNN are used 
to train a linear classifier on the same data set (Wang & Wu, 2014); 
both these approaches, however, require large labelled data sets 
for training. Furthermore, human-level performance has not been 

achieved by either of these (Borji & Itti, 2014).
This study attempts to answer the question whether features ex-

tracted from a CNN trained on the object classification database 
ImageNet (Jia Deng et al., 2009) can be used to simultaneously rec-
ognise places and scenes in an unsupervised regime; no retraining 
of the network will be carried out. Whilst testing the feasibility of this 
approach is of scientific interest in its own right, it is also of interest 
for a potential application in autonomouslynavigating agents. Under-
standing the scene one is in is relevant to enable context-sensitive 
adaptation of one’s driving behaviour (Seff & Xiao, 2016). Whilst 
localisation is an easilyachievable task with the help of the Global 
Positioning System, it is difficult to infer the general scene based 
on the location alone, due to a lack of relevant labelled data (Chu 
et al., 2006). Applying CNN features in an unsupervised context 
comes with a set of questions, most importantly about features of 
which layer depth allow for best performance. Previous studies have 
shown that the middle layers lead to the best results; it has been 
argued, rather intuitively, that nodes in early layers code only for 
basic shapes (and are hence undertrained) whereas nodes in later 
layers code mostly for task-relevant information and are hence over-
trained for deployment in a different context (Yosinski et al., 2014). 
Equally, it is known that sparsity, i.e. the percentage of nodes that 
take on zero in a given layer, increases drastically with layer depth 
(Milde et al., 2017). This is of specific importance as newer acceler-
ator architectures allow to disregard any zero value node, as in the 
NullHop architecture (Aimar et al., 2017), i.e. later layers come with 
additional computational benefits. In essence, it is tested whether 
unseen visual environments that are more similar to only one of a 
number of previously-seen visual scenes for a human observer will 
be classified as that respective scene with accuracies significantly 
above chance level and whether previously-presented images will 
be recognised as such.

2. METHODS
A novel task was created to test place and scene recognition in 

an unsupervised set up. The algorithm is first trained with no labels 
being presented. Input images representing a drive through either 
an inner city or countryside environment (see 2.1) were then given; 
for each image it was tested whether it was correctly defined as pre-
viously-observed or new (place recognition; see 2.4.1). It was fur-
thermore tested whether the correct scene was recognised (scene 
recognition; see 2.4.2). The algorithm consisted of a CNN to extract 
features from the images (see 2.2), a place memory and matching 
algorithm for place recognition (see 2.4.1) and a scene recognition 
mechanism that was based on k-means clustering (see 2.4.2). Dif-
ference measures were also taken (see 2.3).

2.1 Input data
The image data was taken from the KITTI Vision Bench-

mark Suite, which consists of visual driving data recorded by An-
nieway, the autonomous driving platform of the Karlsruhe Institute 
of Technology (Geiger et al., 2012). Four data sets were chosen 
to represent data of one of two scenes, either inner city driving or 

been chosen for its relatively small size, which might be important 
for a potential robotic application. An analysis of other networks, 
e.g. networks that are pretrained on driving data, is subject of future 
research (see 4.5).

Feature extraction For this study, the algorithm is run with feature 
activity stemming from a specific layer at a time. As a first step of 
pre-processing, each matrix of feature activity resulting from the 
analysis of one image, usually called a feature map, will be flattened 
into a one-dimensional vector consisting of n 32-bit floating point 
values. Vector lengths per data set and network choice are shown 
in tables 2 and 3; AlexNet was run with the full-sized data where-
as VGG16 was run on the resized data set due to computational 
constraints. Implementations of both of these pretrained networks 
were taken from Caffe, a deep learning toolbox created at the UC 
Berkeley (Jia et al., 2014). The last, fully-connected layers of both 
networks have been removed so that images can be used that dif-
fer from the image size of the training set. Other networks can be 
easily tested with the code library that was produced; the library is 
available upon request.

countryside driving. The sequences 2011_09_26_drive_0039 and 
2011_09_26_drive_0091 were chosen to represent inner city driv-
ing; the sequences 2011_09_26_drive_0014 and 2011_09_26_
drive_0056 were chosen to represent countryside driving (see fig-
ures 1). The length of each of these sequences are shown in table 
1. Unsynced and unrectified images were used. Two input sizes 
were analysed; firstly in original size, i.e 1392 x 512 pixels (width 
x height), or the shorter side of the image has been scaled down to 
the expect input size for each network, resulting dimension in 617 x 
227 pixels for AlexNet and 609 x 224 pixels for VGG16 (see section 
2.2 for further information about these networks).

To enhance the readability of this report, hereafter the two 
city data sets, i.e. 2011_09_26_drive_0039 and 2011_09_26_
drive_0091, will be labelled as city_1 and city_2 respectively; equal-
ly, 2011_09_26_drive_0014 and 2011_09_26_drive_0056 will be 
labelled as countryside_1 and countryside_2.

Table 1. Length of data sets. Data sets used in this study listed by their length, 
measured in number of images.

city_1 city_2 countryside_1 countryside_2

401 346 320 300

2.2 Convolutional neural networks
Feature extraction is carried out by a CNN; this describes a type 

of feedforward ANN with architectural parameters set to resemble 
characteristics reminiscent to those of the mammalian visual sys-
tem. A CNN is a further development of the neocognitron (Fukushi-
ma et al., 1983). To give a simplified sketch of its workings, a CNN 
contains three types of layers: convolutional layers, pooling layers 
and fully-connected layers. Nodes are not connected to all nodes in 
the successive layers, but rather to a certain subset. In convolution-
al layers, each node represents a filter that is convolved over the 
section of the input volume that the selectively-connected subset is 
tuned to; abstractly, these layers detect features in the input image 
by applying filters to each image position. Pooling layers reduce the 
dimensionality; intuitively this entails that having identified a certain 
feature is deemed to be more important than retaining its exact lo-
cation, i.e. feature representations become invariant to the location 
in which the original features occurred. Fully-connected layers then 
form the output of the network, which, in the context of object recog-
nition, is a vector representing the likelihood that the image contains 
an instance of each class of objects that the network knows about; 
the highest likelihood value represents the object the network has 
recognised in the input (Krizhevsky et al., 2012).

Choice of network Two networks have been chosen for the pur-
pose of this study; firstly, the 16-layer CNN of the Visual Geometry 
Group (VGG16; Simonyan & Zisserman 2014) of the University of 
Oxford, trained on the ImageNet database (Jia Deng et al., 2009), 
was chosen because of its relatively high number of convolutional 
layers. It was also shown that the VGG16 is capable to represent 
more complex features and shows higher levels of absolute spar-
sity (Yu et al., 2014) than the AlexNet, the other network that has 
been used in this study (Krizhevsky et al., 2012). The AlexNet has 

Figure 1. Input images. Example images for all data sets, with 2011_09_26 drive_0039 
(or city_1) and 2011_09_26 drive_0091 (or city_2) shown in the left column; 2011_09_26_
drive_0014 (or countryside_1) and 2011_09_26_drive_0056 (or countryside_2) are shown 
in the right column. A comparison within a column would hence describe a place distinction 
whereas comparison within a row would represent a scene distinction.

Table 2. Feature vector sizes for AlexNet. Sizes of flattened feature vector per layer 
when AlexNet is used, across original and resized data sets

layer AlexNet, resized data AlexNet, full-sized data

conv1 802,560 4,185,216

conv2 525,312 2,790,144

conv3 & conv4 189,696 1,023,744

conv5 126,464 682,496

Table 3. Feature vector sizes for VGG16. Sizes of flattened feature vector per layer 
when VGG16 is used, across original and resized data sets

layer VGG16, resized data VGG16, full-sized data

conv1_1 & conv1_2 8,730,624 45,613,056

conv2_1 & conv2_2 4,372,480 22,806,528 

conv3_1, conv3_2 & conv3_3 2,193,408 11,403,264 

conv4_1, conv4_2 & conv4_3 1,103,872 5,701,632

conv5_1, conv5_2 & conv5_3 279,552 1,425,408

2.3 Analyses of difference
A node being active in a CNN can intuitively be described as de-

noting the presence of a specific feature in the input image; learning 
is thought to be a process that leads to each node developing their 



43 | ABC Journal | 8 February 2019 | 44

drawn for each image comparison. Pearson’s r results from the co-
variance of two given variables divided by the product of their stan-
dard deviations (see equation 3).

(3)

where cov(u, v) describes the covariance measure, or the linear as-
sociation between the two variables, which is defined as the expect-
ed value function of the given vector minus its mean (see equation 
4).

(4)

2.4 The dual-stream algorithm
As a top-level description, the algorithm is built up of three major 

components: a CNN to extract features from the input images, a 
place memory combined with a matching mechanism that allows to 
compare new observations against previously-observed examples, 
and lastly a scene recognition algorithm, based on k-means cluster-
ing, that allows to classify an observation as belonging to a visual 
environment in an unsupervised fashion (see figure 2). Place rec-
ognition and scene classification occur in parallel, once the features 
are extracted by the CNN; hence this algorithm is reminiscent of a 
dual-stream system. These streams are further outlined in sections 
2.4.1 and 2.4.2, respectively.

2.4.1 Place recognition
The first of the two processing streams entails a collection, or 

memory, of previously seen visual information. The main target of 
this algorithm is to define whether a new observation should be re-
garded as an example of a previously-seen place or should rath-
er be defined as a new place. The algorithm contains a matrix P 
of such defined places as well as a comparison algorithm, namely 
RSD with an added term t that compares the result with a previous-
ly-defined threshold value. Firstly, a new observation u is compared 
against all stored places in the array P and the comparison with the 
lowest difierence value is stored. This value is then compared to the 
threshold (see below); if the value is above the threshold it is defined 
as a new place, otherwise it is defined as an instance of a previous-
ly-encountered place (see also algorithm 1).

Threshold definition The threshold is defined relative to the ob-
served difference values between the first n observations of all train-
ing data sets; the mean RSD between all these observations was 
defined as the threshold for the purpose of this study.

2.4.2 Scene recognition and k-means clustering
Scene classification is based on k-means clustering, a class of 

algorithms that assign n observations to k groups over unlabelled 
data and can hence be described as an unsupervised machine 
learning algorithm (MacQueen, 1967). k, or the number of clusters, 
has to be defined a priori. Clustering is achieved by minimising the 

tuning to one such specific feature (Schmidhuber, 2014). Due to 
the co-occurrence of similar objects (and, hence, the features that 
constitute these objects) in a scene, it has been hypothesised that 
significantly higher difference values will be observed when the fea-
ture activity resulting from images across the same scenes are com-
pared, rather than when a comparison is carried out between feature 
activity resulting from images of the same scene. Three measures 
were carried out to examine difference: (1) root-squared difference 
(RSD), (2) Hamming distance and (3) correlation coefficients, which 
will be outlined below. All three analyses follow the same schema:

1.	 The comparison involves four data sets, two of each visual en-
vironment (see section 2.1 and figure 1).

2.	 Each data set will be compared with all others, resulting in two 
comparisons between the same scenes and four comparisons 
between different scenes.

3.	 Each given comparison occurs image-per-image, i.e. feature 
activity for image one of data set one will be compared with the 
feature activity for image one of data set two, and so on. If the 
sequences are of unequal length the analysis will be stopped 
once the end of the shorter sequence is reached.

4.	 The respective results will be compared by an independent 
t-test.

A principal component analysis has been carried out to understand 
if more variability can be explained with the same number of compo-
nents with layer progression, indicating that the relevant information 
is found over less features; this analysis is presented in appendix B.

(1) Mean root-squared-difference To calculate the RSD, two re-
spective feature vectors, u and v, are drawn; their difference is cal-
culated node-wise and then squared. The sum of this node-wise 
squared difference is then taken and, in a final step, the square root 
of this value is drawn (see equation 1).

         (1)

(2) Mean Hamming distance Hamming distance, an information 
theoretic difference measure that goes back to Richard Hamming, 
quantifes the amount of positions that would need to be changed to 
turn one given vector into another given vector (Hamming, 1950). 
In this case, the respective feature maps, u and v, are treated in a 
binary format; the value of a node takes on a 1 if the value exceeds 
zero, or a 0 if the node’s value is exactly zero. Intuitively, it will hence 
be compared whether similar visual scenes lead to a similar pattern 
of nodes being activated. Mathematically, the Hamming distance 
function of two feature maps, d(u, v), is defined as the sum over all 
unequal values at the same position (see equation 2).

(2)

(3) Mean Pearson’s r To compare the correlation of feature vectors 
between different visual environments, the Pearson product-mo-
ment correlation coefficient, or – more commonly – Pearson’s r, is 

d HD (u,v) = [uk ≠ vk ]
k=0

n

∑

dCORR(u,v) = cov(u,v)
σu∗σ v

d RSD (u,v) = (u1 − v1)
2 + ...+ (un − vn )

2

cov(u,v) =
i=1

N

∑
(ui − µu )(vi − µv )

N

sum of a squared distance measure, often Euclidean distance, be-
tween elements within a cluster and their centroids. After k centroids 
have been randomly initialised, the following iterative process is car-
ried out until convergence (defined as no further change in cluster 
assignment):

1.	 Find the nearest centroid for each of the points, or features, in 
the data set.

2.	 Assign each point to the cluster that the centroid represents.
3.	 For the number of k, compute the centroid position of the data 

points that were assigned to this cluster; move the centroid to 
this position (MacQueen, 1967).

For this study, k was set to k = 2 in order to represent the two visual 
scenes to be distinguished from each other. The place memory, as 
outlined in 2.4.1, is being clustered. Clustering as such does not al-
low for classification; representative snippets of each visual environ-
ment are further analysed with respect to the closest cluster centroid 
of each of their observations. Two phases are distinguished, training 
(see 2.4.3) and inference (see 2.4.4). Cluster evaluation measures 
have also been taken and are presented in appendix C.

2.4.3 Training phase
The schematics of the training phase are outlined in figure 2. During 
training only the place memory processing stream is active; obser-
vations will not be directly analysed by the scene recognition algo-
rithm. As a first step during training, all distinct places will be col-
lected in the place memory (see 2.4.1 for the mechanism). Once all 
training data has been analysed by the place recognition algorithm, 

Figure 2. Top-level algorithm schematics. A set of input images are first analysed by 
the given CNN and the feature activity of the given layer is then fed to two algorithms. To 
achieve place recognition the feature activity is compared to previously-seen places; it is 
here that it is assessed whether the image represents a known place or should be defined 
as a new place. The scene recognition compartment analyses, through k-means cluster-
ing, which of the known general visual scenes the given input belongs to.

Algorithm 1. Building up a place memory 

function rs_distance(u, v) ▹ Element-wise root-squared difference
for element i in u do

result += square_root(ui + vi)

for 0 to number of elements in P do ▹Memory build up
di = rs_distance(u, Pi)

if min(d) > threshold then ▹ Decision: known or new place?
Pi+1 = u

the resulting place matrix P is used to generate the k-means cluster-
ing. These two phases within training occurred sequentially in this 
study, i.e. all places were collected first, but an online updating set 
up is outlined for further research (see section 4.3).

2.4.4 Inference phase
Scenes are represented by vectors that result from the cluster cen-
troid that is closest to each observation within a representative snip-
pet of that given scene, called the fingerprints. This centroidal pat-
tern is then also drawn for observations that are to be classified. To 
generate scene classifications, the overlap between the hash values 
of the representative scene snippets and the test sample is drawn. 
The test sample is defined as being part of the scene with which the 
overlap is higher; see algorithm 2. This is an instance of a nearest 
centroid classifier (Lange et al., 2004).

Algorithm 2. Unsupervised classification 

for fingerprint in fingerprints do ▹ Iterate through all known scenes
overlapfingerprint = sum(fingerprint & allocationobservation)

sceneobservation = argmax(overlap) ▹ Classification

2.5 Scenarios and accurate behaviours
Scenarios Three scenarios have been established and the respec-
tive desired behaviour defined for each of these; the resulting accu-
racy would be scored as a 1 if the algorithmic behaviour matches the 
desired behaviour over all test items. Testing is carried out in each 
of the domains, place recognition and scene recognition. Whilst the 
aim of this research effort was to carry out place recognition it was 
not possible to do so due to the lack of ground-truth information in 
the input data. It was, however, feasible to understand if the alloca-
tion of places was carried out in a sensible way; hence the task will 
hereafter be called place allocation. Three scenarios have been cre-
ated to test place allocation; firstly, the training examples have been 
re-introduced into the system, with the desired behaviour being that 
each observation is allocated to a place memory that originally came 
from the same data set as that given observation (see figure 3a). 
Further images from the training data, which have been withheld 
during the training process, are presented in scenario two (see fig-
ure 3b); the desired behaviour is that all images are defined as not 
previously seen. The third scenario entails presenting separate data 
sets from the same scenes (see figure 3c); the desired behaviour, 
as before, is that all images are defined as not previously encoun-
tered. Scene recognition was based on that third scenario.

3. RESULTS
Analyses of difference were taken to test the hypothesis that the 
co-occurrence of similar objects in the same scene would lead to 
lower difference measures when members of the same scene are 
compared to each other (see 2.3). To test for place allocation and 
scene recognition performance, scenarios with their respective de-
sired outcome were defined and the accuracy of the algorithm was 
measured (see 2.5). To briefly anticipate the results, a general trend 
can be observed in the analyses of difference, with less difference 
when images from different scenes are compared in earlier layers 
and the reverse picture occurring with later layers (see figures 4, 5 
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and 6). Accuracy ratings are around the expected chance level of 
50% for features of many CNN layers but show high performance in 
select layers (see tables 4 and 5 as well as figures 7 and 8).

3.1 Analyses of difference
(1) Mean root-squared-difference analysis The results for the 
RSD analysis are presented in figure 4. For AlexNet, significant dif-
ferences were found for conv1 and conv3. The mean RSD when the 
same visual scenes are compared is lower in conv3 and higher for 
conv1. For VGG16, significant differences were found for the first 
four convolutional layers and conv3_2; in all these the mean RSD 
value is higher for the same sequence comparison.

(2) Mean Hamming distance analysis The results for the Ham-
ming distance analysis are presented in figure 5. For AlexNet, sig-
nificant differences were found in all layers; lower mean Hamming 
distances were observed in conv1, conv2 and conv5 whereas high-
er mean Hamming distances were observed in conv3 and conv4. 
For VGG16, significant difference were found in all layers but three 
intermediate ones; significantly higher differences, contrary to the 
hypothesis, were however found in six out of the thirteen convolu-
tional layers.

(3) Mean Pearson’s r analysis The results for the mean Pear-
son’s r analysis are presented in figure 6. For AlexNet, significant 
differences were found for all layers; only for the last three layers 
the mean correlation coefficient was higher when the same scenes 

Figure 3. Testing scenarios. Testing scenarios visualised as a bird’s-eye-view map; graph 
a) shows the training data. The dotted circles in graphs b) and c) denotes the data that has 
been used for testing in that respective scenario.

(a) Scenario 1: Reintroducing the training 
data

(b) Scenario 2: Further images from the 
training data

(c) Scenario 3: Different data sets from the 
same scenes

Figure 4. Mean root-squared-difference analysis. The mean RSD analysis was taken 
between feature vectors resulting from images of the same scene or different scenes 
across the two tested networks; significant differences can be observed in 44.4% of layers. 
No clear conclusions across layers can be drawn as same scene comparisons tend to 
show higher difference values in early layers with the reverse tendency being found in 
intermediate layers.

were compared. For VGG16, significant differences were found in 
all layers; for the first four layers the mean correlation coefficient 
is lower for the same sequence comparison; the following layers 
show a significantly stronger correlation between same sequence 
comparisons.

3.1 Algorithm accuracy
Accuracy results for each respective CNN are shown in tables 4 and 
5; the place allocation and scene recognition results are visualised in 
figures 7 and 8, respectively. For the AlexNet layer, the highest per-
formance for place allocation, across the three tasks, was 84.43% 
in layer conv5; layer conv3 showed the highest scene recognition 
performance with 93.7%. In VGG16 the highest accuracy for place 
recognition was found in layer conv3_1 with 99.73%; scene recog-
nition showed its best result in layer conv4_3 with 87.97%. These 
values result from inference over 1,376 (place recognition) and 721 
(scene recognition) test images. Running the same algorithm with 
the raw image data as input led to significantly worse performance 
across all but one tasks; see figure 9.

Figure 5. Hamming distance analysis. Hamming distance measures were taken and 
compared between feature vectors resulting from images of the same scene or different 
scenes across the two tested networks; significant differences can be observed in all layers 
but three intermediate ones in VGG16. No clear conclusions across layers can be drawn 
as same scene comparisons tend to show higher difference values in earlier layers with the 
reverse tendency being found in intermediate and later layers.

(a) AlexNet (b) VGG16

(a) AlexNet (b) VGG16

Figure 6. Mean Pearson’s r analysis. Correlation measures were taken and compared 
between feature vectors resulting from images of the same scene or different scenes 
across the two tested networks; significant differences can be observed in all but three 
layers. No clear conclusions across layers can be drawn as different scene comparisons 
tend to show higher correlation values in earlier layers with the reverse tendency being 
found in intermediate and later layers.

(a) AlexNet (b) VGG16

Table 4. Accuracy results for AlexNet. Percentage of accurate behaviour when 
AlexNet was used for feature extraction; highest performance is highlighted in bold, 
100%, 53.3%, 100% and 93.7% across the four tasks of place allocation with training 
data, similar testing, unrelated testing data and scene recognition.

layer Place allocation 
accuracy

Place allocation 
robustness, 

same set

Place allocation 
robustness, 
different set

Scene 
recognition

conv1 0.529 0.489 1.0 0.5

conv2 1.0 0.347 1.0 0.513

conv3 1.0 0.501 1.0 0.937

conv4 1.0 0.337 1.0 0.589

conv5 1.0 0.533 1.0 0.506

4. DISCUSSION
This study has shown that feature activity of specific CNN layers, 

if the distinctive places they represent are used for k-means cluster-
ing, can allow to classify a visual image as belonging to a general vi-
sual scene in a purely-unsupervised manner and significantly better 
than (1) what is expected by chance and (2) if the same algorithm 
is run with raw image data. As such, the results can be taken as a 
successful proof of concept; further testing with different data sets 
and scenarios is, however, needed. This study is – to the best of our 
knowledge the first approach to scene recognition in a fully unsuper-
vised paradigm; previously it was shown only that scene recognition 
capabilities emerge when labelled data are used to either train a 
CNN (Zhou et al., 2014) or a support vector machine (Wang & Wu, 
2014).

4.1 Layer choice
Accurate behaviour varies dramatically with layer depth; this be-

comes especially clear when place allocation robustness to images 
of the same set is taken into account, the accuracy of which ranges 
from 4% (in layer conv4_1), i.e. systematic mis-allocation, to 99% 
(in layer conv3_1) for the case of VGG16. This huge variability is, 
however, an intriguing finding; future research efforts should be 
devoted to gaining a systematic understanding of what layer depth 
generates features that are appropriate for a given new task. It had 
been argued before that medial layers are generally appropriate in 
the context of transfer learning (Yosinski et al., 2014). In this study 
it was found that – when VGG16 is used – the best accuracies in 
place recognition performance occurs earlier in the progression of 
layers (conv3_1) as it does for scene recognition (conv4_3; AlexNet 
shows adequate performance for both tasks in layer conv3). It must 
hence be inferred from this that feature appropriateness is depen-
dent on the characteristics of the transferred-to task, as features ex-
tracted from different layers appear most appropriate to either place 
or scene recognition.

4.2 Handling the size of the place memory
If this system was to be used with more training examples, it 

is likely that the size of the place memory will become unmanage-
able rather quickly. Further research should assess ways of how the 
size of the place memory can be kept within manageable limits. A 
few approaches are conceivable; first, a consolidation mechanism 
could, whenever no updating occurs, iterate through all items in the 
place memory and remove those items that are most similar to each 
other. Equally, it has been shown that feature activity of a CNN is 
compressible due to the large percentage of zero activity which in-
creases with layer progression (Aimar et al. 2017; see also appen-
dix A). Further research should address whether the place memory 
could hold compressed representations rather than the actual input 
features. Lastly, recent research efforts have been looking at imple-
menting the mechanics of a CNN whilst reducing the computational 
requirements (Tripathi et al., 2017), also through lowering the nu-
merical precision (Milde et al., 2017); further research should aim 
to understand whether these approaches lead to the same perfor-

Table 5. Accuracy results for VGG16. Percentage of accurate behaviour across all 
tasks when VGG16 was used for feature extraction; highest performance is highlight-
ed in bold, 100%, 99.1%, 100% and 87.97% across the four tasks of place allocation 
with training data, similar testing, unrelated testing data and scene recognition. - deno-
tes that no meaningful classification could be made, in that one case due to a lack of 
hash value separability.

layer Place allocation 
accuracy

Place allocation 
robustness, 

same set

Place allocation 
robustness, 
different set

Scene 
recognition

conv1_1 0.98 0.513 1.0 0.5

conv1_2 0.95 0.533 1.0 0.5

conv2_1 1.0 0.619 1.0 0.456

conv2_2 0.54 0.5 1.0 -

conv3_1 1.0 0.991 1.0 0.48

conv3_2 1.0 0.417 1.0 0.57

conv3_3 1.0 0.243 1.0 0.69

conv4_1 1.0 0.056 1.0 0.5

conv4_2 1.0 0.749 1.0 0.5

conv4_3 1.0 0.871 1.0 0.88

conv5_1 1.0 0.804 1.0 0.791

conv5_2 1.0 0.441 1.0 0.677

conv5_3 1.0 0.597 1.0 0.633

Figure 7. Algorithmic accuracy in place allocation. Results for the three place recogni-
tion tasks; graph a) shows the results for AlexNet features, graph b) for VGG16 features. 
For each test optimal behaviour was defined; this graph denotes the percentage of correct 
behaviour across 1,376 test images.

(a) AlexNet (b) VGG16

Figure 8. Algorithmic accuracy in scene recognition. Results for the scene recognition 
tasks; graph a) shows the results for AlexNet features, graph b) for VGG16 features. This 
graph denotes the percentage of correctly recognised scenes across 721 test images.

(a) AlexNet (b) VGG16

(a) AlexNet (b) VGG16

Figure 9. Comparison to raw image data from CNN features. The same algorithm has 
been run with raw image data instead of CNN features. This graph shows the comparison 
with CNN features from the best-performing layer. The four tasks stand for (1) place allo-
cation, (2) place allocation robustness, same set, (3) place allocation robustness, different 
set and (4) scene recognition. Graph a) shows the results for AlexNet features, graph b) 
for VGG16 features.
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mance during transfer learning.

4.3 Supervision signals and continuous updating
It can be argued that some supervision was delivered in this 

study; firstly, the representative snippets for classification were de-
fined a priori. Equally, it can be argued that the number of k, as it is 
set specifically to represent what is required for classification, rep-
resents a signal of supervision. It is, however, likely that both these 
signals will not be needed if the algorithm is run continuously. This 
study entailed clearly-separated phases of training and inference; it 
is, however, conceivable that the system can be used online, e.g. in 
application to a robotic system. Only minor changes would need to 
be made if such a system were to run in an environment with only 
two scenes. Firstly, a training phase needs to be run to generate 
sufficiently-long fingerprints for each visual scene, as well as a suffi-
ciently large place memory. Secondly, for any new post-training ob-
servation, inference would need to be made first; after this, the place 
memory should be updated which, in turn, should lead to an update 
in the respective clustering space, e.g. through batched k-means 
approach (Bottou & Bengio, 1995).

Further research is required if such an online system should en-
tail the capability to automatically detect and adapt to observing a 
new visual scene. Theoretically, an additional k can be spawned; 
the conditions under which this should be carried out require further 
research. It is conceivable that the distance between the centroids of 
such an observation representing a completely new scene – and the 
previously-defined cluster centroids is larger than what is observed 
when observations are presented that the cluster has been trained 
on; this hypothesis is yet to be tested. Hence a mechanism that in-
crementally adds clusters upon observation of completely unknown 
visual environments is conceivable, potentially alleviating the need 
for defining the value of k. Equally, once a new scene is detected, 
the next n observations could arbitrarily be defined as the fingerprint 
of this scene, alleviating the need for the other signal of supervision.

4.4 Further testing of place recognition capabilities
 As noted before, further research is required to adequately test 

for place recognition, rather than just place allocation, as was done 
in this study. Adequate place recognition performance through le-
veraging CNN-derived features has previously been presented 
(Chen et al., 2014); further research should hence address the 
question whether the system used by Chen et al. can be combined 
with our approach to scene recognition in a meaningful way. More 
rigorous testing of place recognition performance would entail to test 
a number of different scenarios, e.g place recognition under vastly 
different lighting conditions (day and night) or when the environment 
has changed slightly (a certain item, e.g. a car, has been removed 
from a scene), to only name a few (Lowry et al., 2016).

4.5 Using other convolutional neural networks
We have chosen the VGG16 network due to its depth and the 

resulting slowly increasing complexity in the features it extracts (Yu 
et al., 2014) and the AlexNet network for its relatively low computa-

tional requirements (Krizhevsky et al., 2012). This analysis should 
be extended to other architectures for two reasons; firstly, it is large-
ly unknown what the factors are that make the features of a given 
network appropriate for transfer to another domain. To illustrate this 
point, a recent study has developed a method that allows research-
ers to measure whether a certain pixel was used for or against a cer-
tain classification decision, in an attempt to probe the task solving 
strategies of different networks. Interestingly, vastly different strat-
egies became apparent between the tested networks that were all 
trained on the same data set and showed similar performance (Zint-
graf et al., 2017). Hence it is unknown which effects different training 
regimes and network architectures have on the underlying feature 
representations; a systematic analysis thereof might be an import-
ant next step. Secondly, large-scale data bases with labels coding 
which scene a given image belongs to have emerged recently (Zhou 
et al., 2014); it would be an interesting hypothesis for further re-
search to test whether features extracted from network trained on 
such a specific data base would lead to superior performance.

4.6 Relevance to neuromorphic hardware
This study shows that k-means clustering can be seen as a ca-

pable scene distinction algorithm; it is, however, debatable whether 
such an algorithm is implementable in a biologically-plausible way 
(Pehlevan & Chklovskii, 2015). First and foremost, the data that was 
used in this study was comprised of full frames of visual information 
which goes contrary to vision in biological organisms. A retinal cell 
does not encode an absolute value of the input it receives at any 
given time point, but rather changes in contrast (Posch et al., 2014). 
Frame-based approaches are also computationally inefficient; infor-
mation is transmitted and processed across time steps even if the 
input does not change, leading to redundant data and processing 
thereof. Event-based vision sensors have been established that 
only transmit information in form of events – if the intensity of visu-
al input changes from one time step to the next, i.e. they transmit 
a sparse representation of the input image (Brandli et al., 2014). 
These sensors alleviate biological implausibilities and have been 
shown to speed up computation in tasks like optic flow estimation 
(Rueckauer & Delbruck, 2016) in comparison to frame-based ap-
proaches. The data that is generated by event-based vision sensors 
is best processed in an asynchronous manner as this alleviates the 
need for external encoding of timing; asynchronous processing nat-
urally preserves temporal information (Chicca et al., 2014).

Such fast asynchronous parallel computation is achieved by neu-
romorphic devices (Schuman et al., 2017). These chips were orig-
inally motivated as a means to simulate the behaviour of neurons 
directly in hardware implementations (Mead, 1990). Neuromorphic 
engineering is a term that encompasses a variety of such approach-
es, e.g. through analogue means, digital means, or a mixture there-
of (Schuman et al., 2017). Low power consumption and fast pro-
cessing times are some of the advantages that make neuromorphic 
chips well-suited in the context of autonomous agents. This leads to 
the question – largely for further research whether the algorithm that 
was used in this study is potentially implementable in neuromorphic 

hardware. Three components would need to be implemented, (1) a 
place memory, (2) a matching operation and (3) a k-means cluster-
ing mechanism.

Memories (1) have been previously implemented in neuromor-
phic chips through spikebased learning rules or simulations of plas-
ticity rules (Indiveri & Liu, 2015). The matching operation in this study 
(2) was carried out through a difference operation which was shown 
to be implementable in neuromorphic hardware in previous studies 
(Temam & Heliot, 2011); further research would be required to ex-
amine how the comparably large vectors could be compared within 
a reasonably time frame. k-means clustering (3) can principally be 
carried out based on the winner-take-all principle (Meila & Hecker-
man, 2013). This computational principle describes a particular set 
up of ANNs in which neurons within a given network compete with 
each other for activation; this is achieved through an organisation 
in which self-excitation of nodes is combined with mutual inhibition 
between nodes. This process, sometimes referred to as competitive 
learning, results in the node, or cluster of nodes, that most closely 
resembles the input to remain active whilst the activity of all other 
nodes are suppressed (Oster et al., 2009). One such model is the 
self-organising map algorithm, which consequently has been shown 
to be able to substitute a k-means clustering algorithm (Ba¸c˜ao et 
al., 2005) whilst adding a topographic arrangement and potentially 
being biologicallyplausible. To briefly introduce these, self-organis-
ing maps are a class of ANN algorithms that carry out unsupervised 
learning. Conceptually, the node that shows the closest match with 
the input data is selected and, subsequently, its neighbouring nodes 
are strengthened to a lesser degree. As a result the dimensionality 
of the input data is reduced and the map structures result in topo-
graphic clusters after learning, with elements within a cluster theo-
retically sharing one or more characteristics with each other (Ko-
honen, 1990). Such self-organising maps have been shown to be 
implementable in biologically-inspired hardware (Rodriguez et al., 
2015), though plasticity in the hardware is required, which is a topic 
of ongoing research (Maldonado Huayaney et al., 2016). It should 
hence theoretically be feasible to implement the algorithm in neuro-
morphic hardware; this would be the first instance of simultaneous 
scene and place recognition in neuromorphic chips.

5. CONCLUSIONS
In summary, it is a trivial task for humans to tell apart instances 

of distinct visual scenes or to remember whether we have been to 
a certain place before. Previous research has shown that a CNN, 
or the feature activity thereof, allow to perform adequately on tests 
measuring both these tasks when labelled training data was given 
(Zhou et al., 2014); place recognition was shown to work well with 
CNN features even in absence of labelled training data (Chen et 
al., 2014). The results of this study, whilst little more than a proof 
of concept, show that, firstly, there exists the possibility to use fea-
tures extracted from a CNN trained on ImageNet to achieve ade-
quate performance on the two tasks – scene and place recognition 
simultaneously. This study furthermore shows that scenes can be 
distinguished without any labels given to accuracies that are well 

above what is expected by chance level. This is the first instance 
of unsupervised scene recognition, to the best of our knowledge. In 
essence, whilst a lot of open questions remain, this study represents 
a successful proof of concept that warrants further research.
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T aking shape in the late 1970s, the relatively new discipline of cognitive neuroscience 
sits on the border between psychology, neuroscience, and computer science, while still 
retaining strong links with philosophy of mind. Due to its interdisciplinary nature, you would 
think that such a broad and complex topic could not be covered adequately in such a small 
book (less than 7 inches tall and only 110 pages long). 

Review by Sammy Millard 

A Very Short Introduction to 
Cognitive Neuroscience

However, in this Very Short Introduction, Richard Passingham, 
an eminent cognitive neuroscientist studying frontal lobe mecha-
nisms for decision-making and executive control, successfully cov-
ers the main concepts, history, and misconceptions of this diverse 
discipline. Moreover, he achieves this with a conversational and en-
gaging style that is easy to follow; a breath of fresh air in comparison 
to the heavy textbooks you frequently see in this discipline! 

The book begins with a chapter on how cognitive neuroscience 
developed as a way of studying what goes on in the head, some-
thing that earlier behaviourism ignored. Diagrams were used to il-
lustrate information flow in the brain, and brain damaged patients 
were studied to enable suggestions of the function of missing com-
ponents. By the late 1970s the development of the discipline cog-
nitive neuroscience began. Passingham then gives an overview of 
which approaches, paradigms, and neuroscientific techniques are 
often used within cognitive neuroscience to bring those unacquaint-
ed with these concepts up to speed in an engaging way. 

Primarily focusing on the human mind, in the main body of this 
book Passingham guides the reader through different branches of 
cognition: perceiving, attending, remembering, reasoning, deciding, 
checking, and acting. Each of these chapters begins by present-
ing three questions (e.g. in the reasoning chapter: do we think in 
languages?) and ends by answering them. In between, the history, 
misconceptions, and current state of each topic are discussed with 
obvious enthusiasm. 

In the final chapter, Passingham goes on to contemplate what 
the future may hold for this exciting field. For example, the develop-
ment of portable Magnetoencephalography (more commonly known 
as MEG) devices that image the brain using magnetic fields pro-
duced by electric currents in the brain, which will increase the range 
of behaviours available for scientific study. The use of computation-
al models is also discussed, in that these will become increasingly 
more flexible, biologically plausible, and therefore useful to us in the 
future. The challenges of these future developments are also men-
tioned, such as the difficulty of creating computational models able 
to account for both fine and gross neuronal architecture. 

At the end of this Very Short Introduction, I was left feeling excit-

ed about what the future holds for this diverse discipline, as well as 
impressed with Passingham’s ability to make these complex topics 
accessible. I would highly recommend this book to those who are 
unfamiliar with this discipline, but also those beginning to study it 
themselves. For those in the latter category, the book will enable 
you to learn what topics are possible within this diverse field, and 
will also equip you with a broader and simpler understanding of what 
you study. This is always helpful when you are inevitably asked that 
question, “but what do you actually study?” from your aunt at the 
next family gathering. Of course, because this was only an intro-
duction, you may be left wanting more! Helpfully, the further reading 
section, containing suggestions for textbooks and reviews on partic-
ular topics, acts as a pleasant final parting note to this Oxford Press 
Very Short Introduction to Cognitive Neuroscience. 
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