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FROM THE EDITORS

In science, a complex system is any system that is formed by many components 
interacting with each other to produce a whole that cannot simply be explained 
as the sum of its parts. It makes sense to view the brain as one such system. 
Among its 86 billion interconnected neurons, larger networks are built upon local 
networks and result in a complex and dynamic system that produces the higher-
order emergent properties that are our behaviours, thoughts, and feelings. Thus, 
complexity science is being incorporated into the study of brain and cognitive 
science more and more in order to unearth some of the mysteries of the brain. 

It is likely that many in our field see the word complexity and feel overwhelmed, 
afraid that they might have to deal with an obscure and intangible concept. However, 
studying something that is complex doesn’t necessarily mean it is complicated. 
In fact, simplicity often lies on the other side of complexity. For example, when 
looking at the interconnectedness of species, if you want to predict the effect of 
one species on another, only focusing on their direct connection is likely have less 
predictive power than if you consider the entire network of species involved. In fact, 
the more you zoom out and embrace complexity, the more likely it is that you have 
a better prediction. This is because, by considering the whole complex system, you 
have a better chance of pinpointing the simple details that matter most. 

In this issue of the ABC Journal, we wanted to untangle and dissolve some 
of the fears produced by the intimidating field of complexity. Therefore, along 
with two excellent research articles selected from the students of the Brain and 
Cognitive Sciences Master’s at the University of Amsterdam, we have several 
original articles from our editors that are focused on complexity and emergence. 
The articles cover the topics of language emergence and emerging intelligence in 
robotics. Additionally, John Holland’s book, ‘Complexity: A Very Short Introduction’, 
is reviewed. 

Finally, we would like to thank our great team for all their hard work on this 
issue, as we have been digital members while away on internships abroad. The 
ABC Journal team now grows stronger with every issue and we believe this will 
continue for years to come. 

On behalf of the editorial team, 

Sammy Millard and Nikos Kolonis 
(a.k.a. digital members)
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Life, Cognition and Intelligence 
Lessons from Emergence

Giving a comprehensive definition of the concepts of ’intelligence’ and ’cognition’ is  
quite a challenge. Intelligence is often used in the context of IQ, describing individ-
ual differences in the ability to successfully engage in increasingly difficult abstract  
problem solving, and taken as a function of brain activity. However, while scientists 

are trying to solve these complicated problems, at the same time it turns out it is incredibly diffi -
cult for scientists and engineers to capture even ’simple’ functions of brain activity, such as the 
mobility of an ant on a beach (Simon, 1996). This discrepancy between intelligence  as complex 
reasoning and as simple behaviour is described by Stewart (1995) as a ’division of labour’. One 
definition captures one set of behaviours, while the other definition captures an entirely different 
set of behaviours.

One popular definition of cognition is the ’computation-
al theory of mind’, statingthat cognition and intelligent 
behaviour stem from the manipulation of symbolic repre-
sen-tations, following the rules of a formal syntax.  This 
interpretation can help describe certain behaviours we tend 
to deem ’intelligent’, such as playing chess, but feel out 
of place for more common-practice displays of intelligence 
such as navigating through difficult terrain. Is therea defi-
nition which could intuitively capture both these types of 
intelligence?

An alternative definition of cognition comes from the phi-
losopher Humberto Maturana. While trying to find a unifying 
principle for how  to define ’life’, he decided that circular 
organization between an environment and an organism en-
gaging in self-maintenance is a powerful description. This 
means that life = cognition, which can be absurd seeing 
that plants are also considered alive. This self-organization 
or ‘autopoiesis’ is best characterized as dynamical interac-
tion between (parts of) the organism and its environment, 
also called an ’Ecological Niche’.

As we formalize all the interactions happening between 
e.g.  light sources from the environment, the eye of an 
animal, the activity in its nervous system, and the motor 
output of the organism,  such as in Figure 1, we can see 
there is a part of the animal considered the ’internal state’, 
which is sealed off from the external world and interacts 
with it through sensation and action. This is required for the 
definition of an organism according to modern day interpre-
tations of autopoiesis, especially the Free Energy Principle 
(FEP) (Kirchhoff etal., 2018).  Such a partition between 
external and internal is also called a ’Markov Blanket’, a 
term directly borrowed from Graph Theory.  While these 
definitions make for a good fundamental description of cog-
nition, it feels out of place for e.g. playing a game of chess.

As one famous scientist, albeit from a different field, 
once said, ’What I cannot  create,  I  do  not  understand’.   
While abstract notions of dynamical systems and Markov 
Blankets are insightful, trying to perfectly reconstruct the 
unified cognitive capabilities of a human might lead to a 
convincing general definition of intelligent cognition. While 
the field is currently far from reaching this point, in certain 
specific domains successes are being booked. Specialized 
systems can outperform humans in either Chess or Go, in 
recognizing dog breeds, or in arbitrary information retriev-
al. However, these machines are in a way always at the 
mercy of their human users. They require heaps of struc-
tured data to betrained and run as long as we provide them 
power.

According to Brooks (1991), a truly intelligent machine 
that might some day equate a human, will not be creat-
ed  this way. He states that first and foremost any intelli-
gent creature knows how to appropriately and timely deal  
with a dynamic environment. This means it can deal with 
movement and complex surfaces, it can hold multiple goals 
and focus on the most appropriate one, and, importantly,  
it has a purpose in being. Brooks builds robots known as 
’creatures’ that adhere to these principles, and in doing so 
can completemany  real-world  tasks  successfully. These  

Figure 1. A Markov Blanket Partition of the external world and a human brain.

by Sven Wientjes
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creatures can be described much in the spirit of the FEP 
and can actually be characterized as a collection of dynam-
ical systems adaptively organized in Markov Blankets.

Perhaps the most famous creature today is the Roomba, 
the robot with the purpose of serving as a vacuum cleaner. 
These creatures are built radically different than the spe-
cial systems that can outperform us in one abstract domain. 
They rely on a ’subsumption architecture’, which means 
they have multiple independent but interacting subsystems 
implemented that are responsible for different behaviours, 
such as shown in Figure 2. For instance, the Roomba has a 
subsystem that keeps track of where it has been and incen-
tivizes it tomove to unclean territory. However, it also has 
a subsystem for avoiding hitting obstacles. This subsystem 
will seize control  over the movement of the creature when 
necessary. All these subsystems are deceptively simple, 
but the behaviour they create when combined is quite in-
telligent and adaptive. This is a beautiful example of emer-
gence. Brooks compares the subsumption architecture to 
the original evolution of animal behaviour and cognition. In 
its basis a hierarchy of reflexes of increasing complexity, 
more and more complex reflexes can simply be added to 
the architecture, which is how Brooks actually developed 
his robots.

It all seems fine to start with a notion of a somewhat 
clever vacuum-cleaner, and abstractly claim that from de-
veloping these creatures according to evolutionary princi-
ples we can reach human-level intelligence, but how do 
we make this concrete? There are two gaps here: The first 
is how creatures originally came into existence in the first 
place, and the second is if through natural selection on a 
hierarchy of reflexive behaviour, cognitive capabilities can 
emerge that can reach levels we would call profoundly in-
telligent (note, it is not required they become better than 
the best chess engine to date!).

Considering the first question, pondering on the origin of 
life is always a difficult subject and any answer seems to 
be unsatisfying, as for now there simply is no way of know-
ing exactly where life came from. This does not stop people 
from trying to formalize their beliefs and intuitions though, 
and a powerful framework is again offered by the theories 
of Autopoiesis and the Free Energy Principle. As Friston 

Figure 2. An example of the layout of a simple susumption architecture.

(2013) describes, in more mathematical detail than can be 
treated here, if an ergodic random dynamical system ex-
ists, Markov Blankets will form and maintain themselves. 
This sounds very abstract, so it requires clarification. A 
random dynamical system is any system of objects (say 
particles or cells), which can interact with each other, and 
do so rather unpredictably. If the system is ergodic, this 
means that over time, even though the system is random, 
states of the system are visited following a consistent prob-
ability distribution. This allows us to assign probabilities 
to the system being in a specific state when observed at 
random. If all these random interactions happen mainly lo-
cally, such as in electrochemical and nuclear forces, Mar-
kov Blankets form for long-range dependencies.  In exactly 
such a model of a Primordial Soup, Friston (2013) sees 
very simple organisms emerge based on these rules.

To the second question, from Brooks (1991) it can be 
derived that the term ’intelligence’ is difficult to capture. 
This is because it is not an innate or isolated property. In-
telligence is an emergent property of certain complex sys-
tems, and typically directed toward something, essentially 
it is adaptive goal-directed behaviour. The famous quote 
that comes with this belief is that ’intelligence is in the eye 
of the beholder’. The fact that many successful real-world  
intelligent  systems (i.e. robots) are based upon the sub-
sumption architecture gives this definition of intelligence 
some force.

From a  scientific perspective then, the frameworks 
of dynamical systems and behaviour-based robotics are 
complementary and provide many good tools not only for 
understanding, but also creating real-world intelligent be-
haviour. However, these frameworks still have lots to prove 
about scalability, as long as there are no WestWorld-style 
androids walking around. Dependent on the question being 
asked about the nature of life, cognition or intelligence, 
these frameworks may or may not provide useful answers. 
Other frameworks, such as neural networks or symbolic 
reasoning, definitely have their own strengths. Whether 
there is any preference for one of these frameworks from 
a philosophy-of-mind perspective, shall be left as an exer-
cise for the reader.
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Hallucinations in schizophrenia; examination 

of resting-state functional networks

INTRODUCTION
In subjects with schizophrenia auditory and visual hallucina-

tions occur alongside other symptoms such as distortions in think-
ing, sense of self and behavior (Buckley et al., 2009). Functional 
connectivity between networks in the brain has been implicated as 
playing a role in this highly impacting symptom (Jardri et al., 2016; 
Alderson-Day et al., 2016; Curcic-Blake et al., 2016). However, the 
confounding effect of schizophrenia on brain connectivity presents a 
problem for research investigating the role of networks and connec-
tivity in hallucinations (Stephan et al., 2009).

Modularity, the division of nodes into networks based on connec-
tivity between them provides a way to compare cognitive networks. 
Activity from regions as measured by functional magnetic reso-
nance imaging (fMRI) can be ordered into identifiable communities 
or modules, associated with specific cognitive functions such as vi-
sion, default-mode, attention, salience and motor control (Fox et al., 
2005; Power et al., 2011; Bassett et al., 2013a). Dividing nodes into 
com- munities or modules is done by various algorithms in the realm 
of graph theory and network science (Blondel et al., 2008; Rubinov 

and Sporns, 2010). Modularity can be quantified through compari-
sons made by measurements of intra- and inter-module connectivi-
ty. Measures of modularity as applied to the brain have been found 
to be able to quantify theoretically anticipated differences in network 
development during adolescence (Gu et al., 2015) and in network 
disruptions in case of pathologies, including schizophrenia (Alexan-
der-Bloch et al., 2010, 2012).

To examine schizophrenia in general and hallucinations in par-
ticular, patients have been compared to healthy subjects; a gen-
eral decrease in connectivity has been found. Additionally, while 
large-scale modules of cognitive functionality such as the default 
mode network are robustly found, more localized module-specific 
differences in intra- and inter-connectedness in network modules 
are present (Stephan et al., 2009; Yu et al., 2012). Building on these 
findings, it is theorized that an imbalance in connectivity within and 
between specific, identifiable modules leads to the occurrence of 
psychiatric symptoms including hallucinations. Notable among these 
suspected involved modules are the central executive network, the 
default mode network and the salience network (Whitfield-Gabrieli 

KEYWORDS
schizophrenia, hallucinations, symptomatology, functional connectivity, tripartite model, default-mode network, central executive network, 
salience network

ABSTRACT
We investigate hallucinations, a highly impacting symptom occurring in several psychiatric disorders, using network and modularity 
measures while removing the confounding factor of overall pathology. We collected resting-state functional connectivity data of participants 
with and without hallucinations and used this data to measure coherence across brain regions. Using network measures we compared 
overall connectivity characteristics and found significant differences based on the absence or presence of hallucinations in participants. We 
examined within-community and between-community network measures of functional modular networks associated with salience, default 
mode and executive functioning, as well as connectivity between these networks and found significant differences based on absence 
or presence of hallucinations. Our findings imply that previous findings of general dys-connectivity in schizophrenia could be caused by 
hallucinations instead of being an effect of general pathology. Significant differences in network coherence localized both within salience, 
central executive and default mode cognitive networks, as well the functional connections between them, provide an argument for their 
involvement in hallucinations.

University Medical Center, Utrecht

Alban Voppel
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et al., 2009; van Lutterveld et al., 2014; Lefebvre et al., 2016).
The identification of these modules as playing a role in halluci-

nations is congruent with the hypothesis that top-down regulation of 
sensory information is impaired in schizophrenia; insufficient control 
of the higher-order, cognitive networks could lead to a lack of filter-
ing of signals from sensory modules, leading to hallucinations (Ale-
man et al., 2003; Gilbert and Sigman, 2007). The three functional 
networks and their interactions have been implicated in a variety of 
neurological and psychiatric diseases and symptoms and are re-
ferred together as the tripartite model (Menon, 2011).

Knowledge of the functional connectivity between and within 
large-scale brain networks suspected of being involved with hallu-
cinations is limited. While research has been performed to examine 
the interaction of these modules (van Lutterveld et al., 2014; Lefeb-
vre et al., 2016), modularity measures and associated network con-
nectivity were not investigated. Additionally, since schizophrenia is 
associated with general dysconnectivity and changes in modularity, 
examination of the specific cognitive modules causing hallucinations 
was confounded by the effect on network connectivity of the overall 
pathology (Stephan et al., 2009; Jardri et al., 2016).

To alleviate this confounding effect we examined network mea-
sures of previously identified resting-state networks in subjects 
with schizophrenia but without hallucinations and compare these 
to subjects with schizophrenia and hallucinatory symptoms, while 
controlling for overall disease severity as determined by the Posi-
tive And Negative Syndrome Scale (PANSS) questionnaire (Kay et 
al., 1987). We hypothesized that subjects with schizophrenia and 
hallucinations have lower overall network connectivity compared 
to subjects with schizophrenia but without hallucinations. While we 
expected overall network division in cognitive modules to be simi-
lar across participants, we expected differences in specific module 
characteristics; we hypothesized that in subjects with hallucinations 
within-connectivity in modules associated with salience, the cen-
tral executive network as well as the default-mode network were 
lower, and there furthermore would be lower connectivity between 
these modules. (Lawrie et al., 2002; Lefebvre et al., 2016; Stephan 
et al., 2009; van Lutterveld et al., 2014). The present study aims to 
increase knowledge of these specific network modules associated 
with hallucinatory symptoms, leading to a deeper understanding of 
this highly impacting symptom as well as possibly identifying targets 
for therapeutic intervention.

METHODS
Participants

Participants were drawn from a population of healthy controls 
and participants with schizophrenia who had taken part in various 
earlier studies in the University Medical Center Utrecht, The Neth-
erlands (Sommer et al., 2010; Scheewe et al., 2012; Begemann et 
al., 2015; Abramovic et al., 2016). Eligible participants were rated 
on severity of psychosis symptoms using the PANSS questionnaire 
and had a previous clinical diagnosis of schizophrenia as confirmed 
using the Comprehensive Assessment of Symptoms and History 
(CASH) questionnaire; both were administered by trained clinical 

researchers (Andreasen et al., 1992). Subjects with schizophrenia 
where divided into groups without hallucinatory symptoms (SZ-) or 
with hallucinatory symptoms (SZ+) based on their score on item P3 
of the PANSS scale (’hallucinatory symptoms’) (Kay et al., 1987). 
Participants with a score of 3 (’mild’) or higher on this 7-point item 
of the PANSS were assigned to the SZ+ group, while participants 
with score 2 or lower were assigned to SZ-. Healthy controls (HC) 
were selected from the pool used for the previous studies and were 
matched based on age, gender and handedness. Exclusion criteria 
for healthy controls were age > 60, any lifetime hallucinatory symp-
toms and any diagnosis on the schizo-affective spectrum. Using a 
measure of relative motion we excluded participants whose move-
ment during the functional scan exceeded stringent standards (See 
MRI preprocessing).

Based on these criteria, from an initial selection of 415 we select-
ed 30 participants with schizophrenia without hallucinatory symp-
toms (SZ-), 50 participants with schizophrenia with hallucinatory 
symptoms (SZ+) and 135 healthy participants as controls (HC) for a 
total of 215 participants. See table 2 for full participant information. 
All participants provided written informed consent before participa-
tion in the study. All studies were approved by the institutional re-
view board of the University Medical Center Utrecht.

MRI acquisition
For all particpants, MRI scans were collected on the same Philips 

Achieva 3 Tesla Clinical MRI scanner in the University Medical 
Center Utrecht (Philips Healthcare, Best, the Netherlands). 600 
blood-oxygenation-level-dependent (BOLD) resting-state fMRI im-
ages were acquired using the following parameters settings: 40 
(coronal) slices, repetition time (TR) 23 ms, echo time (TE) 33 ms, 
flip angle 27◦, field-of-view (FOV) 224 x 256 x 160, matrix 64 x 64 x 
40, voxelsize 4 mm isotropic.

This scan sequence achieves full brain coverage in 609 ms by 
combining a 3D-PRESTO pulse sequence with parallel imaging 
(SENSE) in two directions using a commercial 8-channel SENSE 
head coil (Neggers et al., 2008). Resting-state scans were acquired 
for 6 minutes, and participants were instructed to lie still with their 
eyes closed, not to think of anything in particular and not fall asleep. 
For a subset of 38 HCs, 18 SZ+ and 19 SZ- participants, 1000 im-
ages were acquired over 10 minutes instead of 600 over 6 minutes, 
with the same instructions (Scheewe et al., 2012). For these sub-
jects, we selected the first 600 images and discarded the rest.

Additionally, a high-resolution anatomical scan was acquired for 
each participant for registration to standard space. Since we used 
previously collected data, scanning parameter differed across par-
ticipants. 4 different studies were used with slight differences in vox-
el size, TR/TE time and Field of View (FOV). See table 1 for detailed 
scan information per study.

MRI preprocessing
Preprocessing of the fMRI data was performed using the FM-

RIB Software Library (FSL v5.0.4, available at https://fsl.fmrib.ox.ac.
uk) (Jenkinson et al., 2012). Structural and functional images were 
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skull-stripped using the BET soft- ware tool (Smith, 2002). Rest-
ing-state functional data was then realigned and co-registered to the 
structural high-resolution anatomical T1 scan for each participant 
using MCFLIRT and FEAT through an intermediate mean functional 
scan (Jenkinson et al., 2012). All resting-state data was re-sliced to 
the mean resting-state functional scan per participant, and then this 
mean functional scan was co-registered to the structural high-reso-
lution scan.

On functional data, we used a high-pass filtering of 100 s to 
remove non-global frequency noise and applied a 5 mm spatial 
smoothing kernel. We linearly regressed out the signal of white mat-
ter and cerebrospinal fluid by constructing a mask using FSL FAST 
gray matter and taking the mean signal of white matter and cerebro-
spinal fluid and consequently including these values as nuisance 
regressors (Zhang et al., 2001).

Since head motion is known to have a strong effect on connec-
tivity - and correspondingly, network and modularity measures - we 
used rigorous fMRI pre-processing steps to filter data for excessive 
motion (Friston et al., 1996; Power et al., 2012; Van Dijk et al., 2012; 
Power et al., 2014). For each timepoint compared to the previous 
timepoint for each participant, rigid body head motion was estimat-
ed using FSL’s MCFLIRT routine. The resulting three translation 
parameters and three rotation parameters can be condensed to a 
single vector representing the root mean squared volume-to-volume 
displacement of all brain voxels (Jenkinson et al., 2002, 2012). From 
this one-dimensional motion vector for each volume relative to each 
preceding volume for the total timeseries we calculated mean rela-
tive motion displacement for each participant by averaging over the 
number of volumes(Satterthwaite et al., 2013). We excluded partici- 
pants if their functional data showed a relative mean displacement 
larger than 0.2 mm, as well as participants who had 20 or more 
volumes with a relative displacement of 0.25 mm or higher (Gu et 
al., 2015).

To control further for spurious connectivity between brain regions 
induced by motion, we used the ICA-AROMA approach to remove 
motion-related signals that are identified with single-participant in-
dependent-component analysis, derived from the functional data for 
each participant (Pruim et al., 2015). Finally, functional timeseries 
were filtered using wavelets to retain frequencies between 0.05 - 1 
Hz.

Coherence matrices
Per participant mean BOLD timeseries from 264 previously de-

fined regions of interest (ROI) were selected, using an atlas specif-
ically constructed for analysis of functional MRI data (Power et al., 

2011) An overview of the locations of the ROIs is shown in figure 
1. A wavelet-based algorithm decomposition was applied to extract 
information from the raw timeseries in the 0.05 - 0.1 Hz range (Per-
cival and Walden, 2006). Compared to a direct Pearson’s correlation 
between two ROI timeseries, wavelet coherence additionally makes 
use of the power spectrum of the signals between two regions us-
ing a Fourier transform. This method yields an invariant measure of 
how much activity between two corresponding regions is connected. 
Wavelet-based decomposition is especially suited for deriving brain 
connectivity because of the long-term effects of transient short-term 
increased activity (’memory’) characteristically present in brain mea-
surements, as well as ease of de-noising the signal and inherent 
robustness to outliers (Achard and Bullmore, 2007; Bassett et al., 
2008, 2013a; Gu et al., 2015).

Using this wavelet-based decomposition technique, estimations 
of functional coherence Aij between any ROI i to any other ROI j was 
determined; this was repeated for all 264 ROIs in the predetermined 
atlas. This resulted in a 264 x 264 undirected coherence matrix, with 
each field Aij having a weighted value between 0 and 1. Here, 0 re-
flects a total absence of coherence, and 1 reflects perfect coherence 
between ROIs. No directional causality can be derived from this val-
ue; coherence from i to j is exactly the same as from j to i, and is as 
such undirected. The resulting coherence matrix represents the full 
functional coherence between all 264 ROIs for a participant (Gu et 
al., 2015; Zhang et al., 2016; Bassett et al., 2013b). The procedure 
was repeated for each participant in our 3 groups; group-averaged 
coherence matrices are shown in figure 3.

Table 1. High-resolution anatomical scan parameters

Participants selected TR TE FOV Slices Voxel size

a 38HC,18SZ+19SZ- 10ms 4.6ms 240x240x160 200 0.8x0.8x0.8mm3

b 64HC 10ms 4.6ms 240x240x160 200 0.75x0.75x0.8mm3

c 33HC,23SZ+ 9.86ms 4.6ms 224x160x168 160 0.875x0.875x1mm3

d 9SZ+,11SZ- 11ms 4.6ms 240x240x160 200 0.8x0.8x0.8mm3

Scanning parameters of the high-resolution anatomical scans per study from which participants where drawn. flip angle was the same for each high-resolution T1 anatomical scan at 8◦. 
Respective studies are: a: Scheeuwe et al., 2012; b: Abramovic et al., 2016; c: Sommer et al., 2010; d: Begemann et al., 2015.

Figure 1. Location and division of 264 nodes into 14 putative functional net- works in the 
human brain, following Power et al., 2011; different colors denote different cognitive net-
works found and validated in resting-state fMRI data. Image generated using BrainNet-
Viewer (Xia et al., 2013).
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Overall connectivity measures
From the coherence matrices various network measures can be 

derived. These can serve to give brain-wide measures of differenc-
es in connectivity. To examine these overall connectivity measures 
for significant effects based on the presence of absence of halluci-
nations, we calculated mean coherence and variance thereof. To 
examine the overall strength of brain connectivity, we calculated 
overall network coherence. For this measure, all coherency values 
Aij in the 264*264 coherence matrix A are summed and then divided 
by the total number of nodes in A, leading to the mean coherence 
strength of the matrix. In our study, coherence between 264 ROIs 
was taken and averaged; this procedure was repeated for each in-
dividual connectivity matrix. The resulting coherence coefficient per 
participant is indicative of network strength (Zhang et al., 2016). To 
compare groups, we performed a one-way ANOVA.

Similarly, the range of values Aij present in a coherence matrix 
A can be used to derive the variance in coherency values between 
nodes. This variance serves as a measure of uniformity among ROI 
coherence. Increased variance is interpreted as an increase in how 
well-defined networks are from the total ROIs are (Bassett et al., 
2013a). We calculated the variance across all coherence values for 
each participant, and compared groups using a one-way ANOVA.

For significant findings we examined whether a trend exists be-
tween the three groups using a Jonckheere trend test to establish 
whether or not a gradient exists between groups.

Network division using modularity algorithm
To examine whether our groups coherence matrices show sim-

ilar divisions of nodes in cognitive networks, we aimed to compare 
our coherence matrices to a previously found and validated division 
(Power et al., 2011). We created a functional network division for 
each participants unique coherence matrix using modularity algo-
rithms, as used in graph and network science (Blondel et al., 2008; 
Gu et al., 2015). Modularity algorithms aim to divide nodes (in this 
case, the 264 ROIs) into communities with stronger connections 
(edges, in this case coherence Aij between any brain regions i and 
j) within members in the group compared to other nodes, thus de-
tecting groups where connectivity is significantly correlated - puta-
tive cognitive modules. These modules can be visualized as areas 
of high coherences along the identity line in connectivity and co-
herence matrices if ordered per division (see figure 3). To imple-
ment this, we used a modularity-based greedy Louvain-algorithm, 
originally developed in the field of network science, implemented in 
MATLAB (Blondel et al., 2008; Jutla et al., 2011).

Suppose a network G = (V, A, C) where V = (v
1
, ..., v

n
) is the set 

of nodes, A is the weighted adjacency matrix, and C = {C
1
, ..., C

K
 } 

is a partition of nodes into modules or communities C
i
 ∈ C. To iden-

tify an optimal partition of nodes into communities, we search for a 
partition C that maximized the following modularity quality function:

where 2m = Σ
ij
 A

ij
, P is (p

1
,...,p

n
)T , p

i 
= Σ

j 
A

ij
, γ is a structural resolu-

tion parameter, and σ
C
(i,j) = 1 if v

i
 and v

j
 are in the same commu-

nity and σ
C
(i,j) = 0 otherwise. The structural resolution parameter γ 

has a strong effect on the total number of divisions into which the 
algorithm will divide the ROIs. We used a value of 1.00 , as this 
is the most commonly used value in previous research (Gu et al., 
2015). Following Lerman et al. (2016), we sparsified the coherence 
matrices to the strongest 10% of coherence values and then used 
the Louvain algorithm to divide the 264 ROIs into network modules. 
Because of the inherent non-deterministic nature of the algorithm, 
we repeat the procedure 100 times per participant, then select the 
network with the highest Q and its associated community division 
for further analysis.

Comparisons of network divisions can be quantified by calculat-
ing the z-score of the Rand coefficient measure of network simi-
larity. This measure calculates the similarity of a division of nodes 
in communities to another division. To quantify and compare this 
per-network division, we calculate for the division with the highest 
Q per participant the z-score compared to a previously found and 
validated division (Power et al., 2011). The resulting value gives a 
quantification of network division similarity for each of the partici-
pants in our three groups HC, SZ- and SZ+. These groups can be 
compared to test whether differences in modularity assignment are 
present using a one-way ANOVA. We expect a non-significant dif-
ference in overall partitioning between groups, since although previ-
ous research has found differences in brain-wide dysconnectivity as 
well as changes in connectivity in specific cognitive networks, over-
all cognitive networks have been shown to be robust even in cases 
of psychiatric disorders such as schizophrenia. A similar modularity 
division across groups is an argument for the use of a previously 
determined network division for further examination of network con-
nectivity (Lerman-Sinkoff and Barch, 2016).

Within and Between connectivity
To examine the connections between the salience, central exec-

utive and default mode networks, we calculated within-network con-
nectivity as well as between-network connectivity. These networks 
of the tripartite model have been identified as playing a possible role 
in psychiatric disorders (Menon, 2011) and hallucinations in partic-
ular (Lefebvre et al., 2016). To define these networks in our partici-
pants, we made use of a previously found and validated division of 
our 264 regions of interest in 14 previously defined putative function-
al networks (Power et al., 2011). Using this division we measured 
within- and between connectivity for these networks for each of our 
participants (Gu et al., 2015). The mean connectivity of all connec-
tions between nodes in the community that makes up a functional 
network as well as the mean connectivity of all connections from 
nodes in a community to nodes not in the community were selected. 
This procedure was repeated for the 3 previously identified function-
al communities in the tripartite model for each participant - the de-
fault mode network, the central executive network and the salience 
network - and was then repeated for each participant in each of the 
groups. Comparisons between the SZ- and SZ+ groups was per-
formed using students T-test for independent samples; since multi-
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ple networks were tested for significance, results were corrected for 
multiple comparisons using a bootstrapped random permutation test 
(Phipson et al., 2010).

Connectivity between modules of the tripartite model
To further examine network connectivity in the tripartite model, we 

narrowed down between-network connectivity. Rather than looking 
at the outgoing coherency from one network to all other networks, it 
is also possible to select specific coherence values between nodes 
in one network to specific other defined cognitive nodes. When 
repeated for all nodes in the two identified and averaged over the 
number of connections, the resulting value measures functional co-
her- ence between the two networks. We applied this procedure for 
the connections of the 3 networks identified in the tripartite model, 
taking all connections between the nodes in the salience, central ex-
ecutive and default mode networks. To test whether these networks 
identified in the tripartite mode is significantly different as a correlate 
of the presence or absence of hallucinatory symptoms, we com-
pared the SZ- and SZ+ participant groups using a students T-test 
for independent samples.

RESULTS
Demographics

After initial selection based on availability of functional and struc-
tural MRI scans as well as availability of clinical measures (N = 415), 
we excluded participants based on excessive motion as defined by 
mean relative motion between frames of greater than 0.2 mm or 
more than 20 frames in the functional scan with larger frame-wise 
displacement that 0.025 mm (N = 88), failures in the automated 
MRI registration pipeline (N = 110) and past intra-cranial infarcts 
(N=1). After dividing participants with schizophrenia in SZ- and SZ+ 
groups, healthy controls were matched to clinical participants based 
on age and gender, creating 3 participant groups used further in 
analysis: SZ+ (N = 50), SZ- (N = 30) and HC (N = 135).

Detailed demographic information is shown in table 2. The 
PANSS total score was marginally significant between SZ+ and SZ- 
(T(78) = 2.037 , P = 0.045); however, by splitting up the various 
items we found the main driver of this significance to be the positive 
items on the symptom scale - among which is the item on which the 

groups were divided. No significant difference was found for nega-
tive or general items on the symptom scale. Neither age, gender, 
use of antipsychotic medication in the month before the scan or 
handedness significantly differed between HC, SZ+ and SZ-, as is 
presented in table 2.

Overall connectivity measures
Following (Zhang et al., 2016), we calculated the mean coher-

ence coefficient for each individual coherence matrix as well as 
the variation of coherence thereof and compared these measures 
across groups by using a one-way ANOVA. We found a small but 
significant effect of mean coherence coherence coefficient among 
groups, (F(2,212) = 4.08, p = 0.018). Using post-hoc Tukey tests, 
when comparing HC to SZ-, we found no significant difference in 
mean coherence coefficient, Tukey’s P = 0.628. A significant differ-
ence was found between HC and SZ+, P = 0.039 as well as between 
SZ+ and SZ-, P = 0.029. For details, see figure 2.

For variance of the coherence coefficient we found a similar pat-
tern; one- way ANOVA, (F(2,212) = 4.294, p = 0.015). Using post-
hoc Tukey tests, the difference between HC and SZ- was not sig-
nificant, P = 0.810, while there was a significant difference between 
the two groups without hallucinations compared to the SZ+ group (P 
= 0.022 and P = 0.039 for HC vs SZ- and SZ- vs SZ+, respectively).

To establish whether a gradient exists between the groups, we 
performed a Jonckheere trend test on these overall coherence 
measures. Results were significant at the a < 0.05 significance lev-
el; both coherence coefficient (z = 2.496, one-sided p = 0.006) as 
variance in coherence coefficient (z = 2.426, one-sided p = 0.007) 
showed a trend from HC via SZ- to SZ+.

Network division using modularity algorithm
Using individual networks sparsified to the 10% strongest con-

nections, divisions were created using the Louvain algorithm. The 
resulting divisions of 264 nodes into putative networks were com-
pared against the standard division from Power et al. (2011). The 
resulting z-score of the Rand coefficient for each network were 
tested across groups using a one-way ANOVA. The result was not 
significant, F(2,212) = 0.091, P = 0.913, indicating that the 264 were 
partitioned in roughly similar networks across participant groups 

Table 2. Demographics and clinical measures

Group HC (N = 135)
mean (SD)

SZ- (N = 30)
mean (SD)

SZ+ (N = 50)
mean (SD) Statsa

Age (years) 32.10 (10.35) 28.00 (6.79) 30.50 (9.895) F = 2.590, P = 0.077

Gender(M:F) 82: 53 24: 6 32: 18 Chi-Square,P=0.138

Handedness(L:R) 25: 110 5: 25 3: 47 Chi-Square,P=0.106

Antipsychotics use (Y : N) - 28: 2 43: 7 Chi-Square,P=0.315

PANSS score

total score - 58.23(11.74) 64.17 (12.97) T = 2.037, P = 0.045

general symptoms - 29.93 (6.02) 31.77 (6.88) T = 1.202, P = 0.233

positive symptoms - 13.00 (3,07) 16.71 (4.28) T = 4.142, P < 0.001

negative symptoms - 15.30 (5.34) 15.86 (4.94) T = 0.476, P = 0.635

Detailed demographic and clinical information of the participants, divided into HC, SZ- and SZ+ groups. PANSS = Positive and Negative Symptom Scale. aAge across 3 groups was 
compared using a one-way ANOVA, binary variables including gender and handedness were compared using Pearsons exact Chi-square test and PANSS scores were compared using 
a t-test for independent samples.
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compared to the standard Power et al. division.

Within and Between connectivity
We measured within- and between connectivity for 14 previously 

found functional networks for each of our participants (Gu et al., 
2015). The mean connectivity of all connections between nodes 
within the community that makes up a functional network as well as 
the mean connectivity of all connections from nodes in a community 
to nodes not in the community were selected. This procedure was 
repeated for each of the previously identified functional communities 
of interest per participant, and was then repeated for each partici-
pant in each of the groups.

Healthy Controls versus SZ- and SZ+
We compared average within and between connectivity analysis 

between all 3 groups. Using one-way ANOVAs, we found significant 
effects in the default mode network, both for within (F(2,212) = 3.75, 
P = 0.025) as well for between (F(2,212) = 3.592, P = 0.029). For 
the central executive functional network, we found significant differ-
ences in between-network connectivity (F(2,212) = 3.1, P = 0.047) 
but not for within-network connectivity (F(2,212) = 0.74, P = 0.479). 
The salience networks showed significant differences for both within 
( F(2,212) = 4.02, P = 0.019) as well as for between ( F(2,212) = 

3.4, P = 0.035) connectivity. In all mean connectivity measures of 
networks HC had the highest and SZ+ the lowest mean connectivity. 
Using post-hoc Tukey’s testing, we found that mean connectivity 
between HC and SZ- did not differ significantly for these networks.

SZ- versus SZ+ groups
To further analyze specific network characteristics based on the 

presence or absence of hallucinations, we compared within and be-
tween mean connectivity per functional network using a students 
T-test. We report a significant difference for connections between 
nodes in the ’salience’ network (T = 2.343, P = 0.022) when com-
paring the SZ- and the SZ+ groups, with the SZ- having higher av-
erage connectivity within this network. To correct for the possibility 
of false positives arising from multiple comparisons, we used used a 
random permutation test with 50.000 iterations to our finding of with-
in-connectivity of the salience network. This resulted in a corrected 

Figure 2. Top: Mean coherence coefficients across groups. Boxes bars represent 1 SD; 
lines represents the median. A significant result was detected using a one- way ANOVA 
(F(2,212) = 4.08, p = 0.018). Tukey post-hoc tests were performed to examine differences 
between groups. HC vs SZ- was not significant, P = 0.628. HC vs SZ+ was significant, P = 
0.039, as well as SZ+ vs SZ-, P = 0.029. Bottom: Variance in mean coherence coefficients 
displays a similar pattern. One-way ANOVA was significant (F(2,212) = 4.294, p = 0.015). 
Post- hoc testing showed HC vs SZ- was not significant, P = 0.815. HC vs SZ+ was signif-
icant, P = 0.0215, as was SZ+ vs SZ-, P = 0.039.

Figure 3. Mean coherence adjacency matrices, averaged over groups. From top to bottom, 
HC, SZ- and SZ+. Note the clusters of high coherence across the identity line, indicating 
putative modular networks. Mean coherence averaged over groups was highest for HC+ 
and lowest for SZ+.
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P-value of 0.022; see table 3 for details.

Connectivity between modules of the tripartite model
We examined coherence between specific modules earlier iden-

tified in the tripartite model by selecting mean coherence values be-
tween the default mode, central-executive network and the salience 
network for each participant, yielding mean coherence across mod-
ules of the tripartite model. To compare SZ- and SZ+ coherence, 
we performed a students T-test for independent samples. The test 
showed a significant effect, T(78) = 2.268, p = 0.026. Connectivity 
between these previously identified network modules thus shows a 
significant difference across clinical groups divided using the pres-
ence or absence of hallucinations.

DISCUSSION
We examined functional connectivity and network measures of 

participants with schizophrenia with or without hallucinations com-
pared to healthy controls. A comparison between patients with 
schizophrenia with and without hallucina- tions allowed us to disen-
tangle symptom specific effects (e.g. hallucinations) from disease 
specific effects (e.g. effects due to the illness schizophrenia).

Differences in overall connectivity
We found a significant difference in mean coherence coefficient 

between the SZ- and SZ+ groups; this measure reflects the aver-
aged brain-wide connectivity over all regions. Using this measure 
we found that overall connectivity is stronger in the group without 
hallucinations compared to the group of participants with hallucina-
tions. Thus, the presence of hallucinatory symptoms is associated 
with significantly lower overall coherency on brain-wide measures 
of connectivity. Previous research has shown that, when comparing 
a participants with SZ - without regard to the presence of halluci-
nations or not - have less over- all connectivity compared to HC 
(Lynall et al., 2010); we replicate this finding of significant less over-
all connectivity between HC and SZ+, but no significant difference 
between HC and SZ-.

The variance of the overall connectivity showed a similar signif-
icant difference between groups. The variance shows the range of 
coherence present between all nodes. In participants with schizo-
phrenia, we found that, on average, the variance of overall connec-
tivity is significantly smaller than the variance present in individual 
networks of healthy participants and participants with schizophrenia 
but no hallucinatory symptoms. This can be interpreted as nodes 
being less differentiated from each other in participants with schizo-
phrenia, and in turn suggests that modules composed of these 
nodes are less-well defined.

Our findings suggest that the previously found decrease in over-
all connectivity between healthy controls and subjects with schizo-
phrenia was mainly driven by the difference between the HC and 
SZ+ groups - in effect by the presence of hallucinatory symptoms, 
instead of an overall effect of schizophrenia. By disentangling par-
ticipants with schizophrenia into SZ- and SZ+ groups we show a 
significant trend from HC to SZ- to SZ+ for both measures. Thus, 
simple graph metrics, in this case the mean coherence coefficients 
and the variance thereof, show significant differences based on the 
absence or presence of hallucinatory symptoms in a clinical popu-
lation, arguing for the importance of symptomatology in interpreting 
functional data from participants with schizophrenia.

Network division using modularity algorithm
Our use of the Louvain algorithm to divide networks based on 

inherent coherence values using the z-score of the Rand coefficient 
showed a non-significant result. This was as hypothesized, since 
the modular cognitive networks are robustly found across various 
disorders, including schizophrenia (Lerman-Sinkoff and Barch, 
2016). The non-significant findings served in this case as a valida-
tion of the choice to select previously identified specific functional 
modules. Since the z-score did not differ significantly across the HC, 
SZ- and SZ+ groups, selecting previously identified networks did not 
introduce a difference in modularity selection across groups. This 
provides an argument that further examination of cognitive modules 
was not biased by network modularity differences between groups 
as compared to the Power standard division (Power et al., 2011); 
this is especially important since we used this previously division to 
select our func- tional network modules.

Table 3. Within and between connectivity for functional network modules

Group SZ- SZ+ Statsa

Default Mode within 0.3026 0.2796 T=1.976,P=0.052

Default Mode between 0.2994 0.2753 T=1.286,P=0.202

Central executive within 0.3086 0.2938 T=1.024,P=0.309

Central executive between 0.2716 0.2526 T=0.942,P=0.349

Salience within 0.3847 0.3367 T = 2.343, P = 0.021*

Salience between 0.2983 0.2595 T = 1.547, P = 0.126

aVariables were compared using the Students T-test * = Significant at the p= 0.05 signif-
icance level. When correcting for multiple comparisons, this P-value was adjusted to P = 
0.022, indicating a significant difference in the within-connectivity measure of the salience 
network between the SZ- and SZ+ groups.

Figure 4. Location of nodes assigned to large-scale functional networks in the tripartite 
model, as defined by the standard atlas (Power et al., 2011). Red: central-executive net-
work, green: salience network, blue: default mode network. Picture generated using Brain-
NetViewer, (Xia et al., 2013).
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Coherence between specific functional networks
To narrow down the functional networks responsible for specif-

ic symptoms we aimed to investigate within and between-network 
connectivity of modules, focusing on the tripartite model - the de-
fault mode, central executive and salience modules (Power et al., 
2011). These modules have been associated with psychiatric disor-
ders and hallucinatory symptoms in particular (Lefebvre et al., 2016; 
Alexander-Bloch et al., 2012). Our results showed that the mean 
coherence between the default mode, salience and central exec-
utive modules was significantly different between the two groups 
of participants with schizophrenia. This difference between patients 
with or without hallucinations indicates that alterations of connec-
tivity between modules in the tripartite models are involved in hal-
lucinatory symptoms; this argues for a paradigm of hallucinations 
where dys-connectivity in cognitive networks leads to hallucinations, 
instead of the alternate view where dys-connectivity within sensory 
networks such as the auditory cortex causes the symptom (Whit-
field-Gabrieli et al., 2009). Higher- order cognitive networks could 
have too little activity in suppressing or filtering of signals coming 
from sensory areas, leading to perceiving stimuli that are not ac-
tually present - hallucinations. Since the 3 functional networks 
which showed a significant effect in our analysis are higher-order, 
non-sensory cognitive networks, our research supports the impor-
tance of higher-order networks in the occurrence of hallucinatory 
symptoms (Aleman et al., 2003; Gilbert and Sigman, 2007).

When looking at specific modules within this framework, we found 
an effect in the within-connectivity of the resting-state functional net-
work previously identified as the ’salience’ network (Power et al., 
2011). For this network, we found that the presence of hallucinatory 
behavior was associated with a lower measure of within-commu-
nity, reflecting a weaker coherency in this functional network. This 
effect persisted after correcting for multiple comparisons. The sa-
lience network has been proposed to play a central role in psychosis 
(Palaniyappan and Liddle, 2012); our findings show an involvement 
with one particular symptom of schizophrenia, possibly narrowing 
down the role it plays. The combination of a significant effect of this 
network, combined with the differences found in coherence between 
the modules of the tripartite model are thus supportive of the liter-
ature in regards to the proposed importance of these networks for 

psychiatric symptoms and disorders.

Difference in PANSS score between groups
When examining participant groups for clinical measures, we 

found a significant difference between the SZ- and SZ+ groups in re-
gard to total PANSS score. Any further analysis using these differing 
groups could be due to innate differences in group due to severity of 
disorder (Lynall et al., 2010). Specifically, the PANSS score is used 
as a measure of disease severity (Kay et al., 1987); to further exam-
ine this difference we investigated our groups with regard to PANSS 
scores divided in the 3 major subdivisions, namely negative, positive 
and general scale items, reflecting symptoms in these categories. 
In this analysis, we found no significant difference for the negative 

or the general part of the scoring system. The positive measures, 
which include item P3 - which rates participants for hallucinatory 
symptoms - was found to be significantly different.

Since we explicitly used this item to divide participants and there 
were no significant differences between the other groups, we argue 
that this difference between groups is not a confounding factor of 
disease severity, but rather reflects the presence of hallucinations. 
We cannot exclude a partial effect of other positive symptoms mea-
sured by the PANSS, such as delusions or conceptual disorganiza-
tion, on our results.

Strength and weaknesses of the research
These finding are, to our knowledge, the first trait-based connec-

tivity analysis that reflects the proclivity to have hallucinatory symp-
toms around the time of the functional brain scan. The large number 
of participants, both for people with schizophrenia and for healthy 
controls is an indication of the robustness of our findings. Our HC 
sample is ecologically plausible, with incidental presence of depres-
sion, anxiety or (ab)use of drugs.

There was no significant difference between anti-psychotic med-
ication us- age for the SZ- and SZ+ groups; this is of importance 
because anti-psychotic medication has a proven effect on connec-
tivity (Hadley et al., 2014). The non-significance of medicine use 
between our groups thus argues against our findings being affected 
by change in connectivity associated by medicine use.

The current research used a parcellation of cortical and some 
sub-cortical regions previously defined in the literature for exam-
ination of resting-state networks (Power et al., 2011). Some recent 
studies include specific sub-cortical regions of interest as nodes 
in addition to the nodes defined in the Powers atlas, or use only 
self-defined regions of interest (Lerman-Sinkoff and Barch, 2016; 
Lefebvre et al., 2016). While we followed previous research in our 
choice of atlases, results might slightly differ with other node defi-
nitions.

A large subset (N=20 out of a total group of 30) of the non-hallu-
cinating participants with schizophrenia had experienced hallucina-
tions at any time in their lifetime prior to their inclusion; the PANSS 
questionnaire we used to divide our groups only rates hallucinatory 
symptoms in the past 2 weeks. Data regarding lifetime experienc-
es of hallucinations was not available; the experiences might have 
been several years before the current research, or induced by drug 
use, but they might have also been more recent and caused by 
schizophrenia, but recently diminished. We assume this does not 
confound the network connectivity for our division of groups; but 
this is an assumption that is unproven. Further research, based on 
frequency, severity, type as well causality regarding these lifetime 
hallucinations might provide additional strength and specificity to 
net- work measures involved in hallucinations because of a more 
stringent selection of participants. Division of participants based on 
the modality of auditory or visual hallucinatory symptoms might also 
increase specificity of analysis.

A potential effect we did not examine is the difference between 
state- and trait-based hallucinatory symptoms. Some previous re-
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search has used explicit reporting of hallucinations during scanning 
(Lefebvre et al., 2016; Jardri et al., 2016) while we used the PANSS 
rating scale as a division of functional data of participants; the dif-
ference in measuring a propensity to hallucinate compared to the 
knowledge and timing of specific hallucinations will have a different 
effect in the associated network connectivity. The 2-week duration 
of the PANSS rating items limit these effects somewhat, but the po-
tential difference between a propensity or trait to hallucinate versus 
actual hallucinations during the scan remains.

Clinical relevance and future research
Hallucinations are a commonly-occurring symptom of various 

psychiatric disorders including schizophrenia and often have a large 
impact on subjects. Certain functional networks have been implicat-
ed and interaction between multiple large functional networks has 
been suspected; but much remains unknown. The current research 
aimed to contribute to knowledge regarding hallucinatory symp- 
toms (Shergill et al., 2003; Lerman-Sinkoff and Barch, 2016; Allen 
et al., 2008).

The significant effect of hallucinatory symptoms on mean co-
herence, the variance thereof and within-connectivity of modules 
making up the tripartite model, dependent on the presence of hal-
lucinatory symptoms is a novel finding that in the clinical context 
might lead to improved understanding of the heterogeneous nature 
of schizophrenia and its symptoms.

Previous findings of lower mean connectivity correlations in par-
ticipants with schizophrenia compared to healthy controls will have 
to be reinterpreted as our findings support the theory that dys-con-
nectivity might not be due to the disorder of schizophrenia, but might 
instead be a correlate of specific symptoms (Lynall et al., 2010).

Future research could repeat the present research with the addi-
tion of a group of healthy voice-hearers to see if we can find a more 
expressed gradient in network dysfunction, with as added benefit 
the medication naivety of this population (Sommer et al., 2010). Par-
ticipants with other diagnosis and hallucinatory symptoms could be 
included as well to further find cross-diagnosis evidence of a single 
underlying cause for hallucinatory symptoms, or to identify differing 
mechanisms whereby hallucinations can occur. Inducing hallucina- 
tions by administering drugs and examining the resulting changes 
in connectivity could potentially exclude interference of pathology 
altogether, although this would introduce large-scale effects of the 
administered drugs on brain networks (Carhart-Harris et al., 2016).

Concluding, our research has shown that hallucinatory symp-
toms have a significant effect on brain connectivity data. Narrowing 
down this effect to connectivity between previously found networks 
by comparing participants with and without hallucinations makes 
possible removing one of the main confounding factors, the gener-
al dys-connectivity associated with schizophrenia. Greater under-
standing of both the heterogeneity of schizophrenia and effects of 
specific symptoms on large-scale functional networks will hopefully 
increase our ability to, in the future, improve our treatment for spe-
cific symptoms as well as the general disorder.
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Language emergence in brains, 
babies & bygone times

Language is all around us, permeating every aspect of everyday human life. But to an 
alien from outer space, a non-human animal, or even another human from a different 
part of the world, the sounds and signs that you use to communicate with will seem com-
pletely obscure. At some point in linguistic communication, meaningful concepts emerge 

from arbitrary physical signals. In this piece we look at language emergence on three different 
levels. First, how does our brain create representations of speech sounds, words and sentenc-
es? Second, what stages do initially incompetent babies go through when acquiring their native 
language? And, finally, how did our species end up with such a complicated communication 
system in the first place? We probe into these questions through a few glimpses of findings and 
questions in the literature around these different topics, and also consider how these processes 
might shape the ways our languages work1.

BRAINS
Language only exists through our brains, as this is 

where we map a physical signal, such as a sound wave in 
spoken language or a movement pattern in sign language, 
to meaning (or the other way around). The sound waves 
themselves are not neatly divided into separate entities 
such as words or sentences, but instead they form a con-
tinuous stream of sounds.  This means that you cannot 
hear silences between words in the same way that you 
can, for example, see the spaces between the words in this 
text. Yet somehow, our brains are able to connect these 
continuous speech signals to cognitive representations of 
concepts, thereby creating meaning. How do our brains do 
this? That is one of the central questions that neurolin-
guists try to answer.  

Early neurolinguistic approaches started by trying to find 
out where in our brains language is localized. Much of this 
knowledge comes from fMRI experiments and studies of 
people with lesions in their brains that affected their lan-
guage abilities. Such research postulated for example that 
Broca’s area would be associated with the regulation of 
grammatical structures for language production, and that 
Wernicke’s area plays a role in storing the word meanings 

by Marianne de Heer Kloots & Feline de Wit

for language understanding. However, a more recent case-
study showed that after surgery the plasticity of the brain 
enables other regions to take over at least some of the 
language functions that Broca’s area regulates2. Addition-
ally, other regions in the brain have been identified that 
are sensitive to language3,4. It is clear that language is a 
distributed function rather than contained within one spe-
cific brain region. 

The question of how language is processed is however 
not entirely answered by finding out where the processing 
happens. Another dimension of neurolinguistic research in-
vestigates the oscillatory dynamics of neural populations 
associated with temporal aspects in language processing. 
In EEG studies, well-known ERP effects like the Mismatch 
Negativity or the N400 response are measured to investi-
gate whether people for example predict specific upcoming 
words in discourse5. On the parsing of structured units from 
a continuous signal, some relatively new work is investi-
gating the neural tracking of abstract linguistic structures: 
while participants listen to speech, their cortical response 
spectrum has peaks at the syllable, phrase and sentence 
levels, indicating that hierarchical linguistic structures are 
somehow reflected in the brain signal6.

1 Although we discuss different and separate literatures in the three different sections of this piece, the idea of connecting the three timescales 
draws from work nicely brought together in this book: Christiansen & Chater (2016). Creating language. Integrating evolution, acquisition and 
processing. MIT press.
2 Plaza, M., Gatignol, P., Leroy, M., & Duffau, H. (2009). Speaking without Broca’s area after tumor resection. Neurocase, 15(4), 294–310.
3 Chang, E. F.MD, Raygor, K. P.AB, & Berger, M. S.MD. (2015). Contemporary model of language organization: an overview for neurosurgeons, 
Journal of Neurosurgery JNS, 122(2), 250-261.
4 Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings 
of the National Academy of Sciences, 108(39), 16428-16433.
5 Van Berkum, J. J., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: evidence from 
ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443.
6 Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. 
Nature Neuroscience, 19(1), 158–164.
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BABIES
As described above, the physical channels through 

which language is transmitted are not clearly divided into 
ready-made units for the brain to store. However, babies 
are able to learn their mother tongue fairly quickly. How 
are babies able to do this? Babies already start learning 
the prosodic structure or contour of language when they 
are in the womb7,8. Very young babies are already able to 
distinguish phonemes (sounds that can make a difference 
in meaning, such as the b and c sounds in bat and cat), 
and they quickly become sensitive to the sounds used in 
their own language. While newborn babies can distinguish 
phonemes from both their mother’s language and a foreign 
language, slightly older infants already lose this ability to 
some extent9, and are able to recognize the phonemes in 
their mother tongue better than phonemes of a foreign lan-
guage10. In this way, the baby’s brain perceptually tunes 
to the language it is trying to learn. In this stream of fa-
miliar sounds, babies pick up statistical regularities. Some 
sounds very frequently occur in combination with other 
sounds, and in combination with certain people or objects. 
By recognizing this, babies can divide the speech stream 
into chunks, which can be mapped to a certain concept (for 
example, “mama” is mapped to their mother). 

The acquisition of the language is not a linear increase: 
at certain points during development, sudden ‘jumps’ in ac-
quisition occur. For example, in many children, the amount 
of words they know increases suddenly around two years 
of age11. Although children are seemingly able to pick up 
a language much easier than adults, acquisition does not 
really end. Adults learn new words, phrases, and even new 
grammatical structures, for example in second languages, 
but also in their own. And it’s a good thing that we never 
really stop acquiring language: languages need to be flex-
ible and constantly evolve, so we can continue to describe 
the world around us and communicate about it. Without 
continued acquisition, our language would rapidly become 
out of date. 

BYGONE TIMES
The third and largest timescale for language emergence 

is that of our entire species: when did humans first start us-
ing language? How did some simpler protolanguage devel-
op into a more complex grammatical system that we would 

recognize as language today? What did this protolanguage 
consist of anyway? These questions are definitely hard to 
answer empirically: since language itself does not fossil-
ize, we mostly rely on indirect archaeological evidence for 
identifying at what time point it would be reasonable to as-
sume that human language first came into existence. It is 
generally agreed upon that it must have been sometime 
after the point that the human lineage split from the lineage 
of chimpanzees (about 2.3 million years ago), and before 
the earliest evidence of behavioural modernity such as tool 
use and cave art (about 50.000 years ago). Obviously, this 
still leaves open a huge time range for archaeologists and 
geneticists working out the behavioural and biological cor-
relates of language and, for example, whether any of the 
other hominid species had them. 

Another question is how language came to be - did lan-
guage emerge in our species all at once or was there some 
gradual transition from an earlier nonlinguistic form of com-
munication? For this question it’s useful to decide what ac-
tually distinguishes human languages from other animal 
communication systems. One element that is thought to be 
unique about human languages is that we can produce an 
infinite amount of meanings, and that we do this in a specif-
ic way: by first combining discrete but meaningless speech 
sounds (or hand shapes, for sign languages) in a variety 
of ways to form different meaningful words, and then by 
combining those words in another variety of ways to form 
different sentences meaning different things12. An import-
ant switch or transition is then between a communication 
system having a set of signals that only have referential 
function (pointing to something in the direct environment), 
and a communication system that can productively com-
bine signals to form new meanings. In this respect, it is im-
portant to note that the emergence of these kind of systems 
is all but bygone, despite the title of this section. A classic 
example of a new language emerging in recent times is 
that of Nicaraguan Sign Language, which developed when 
a group of previously isolated deaf children were brought 
together in a new school for deaf education13. The chil-
dren had no previous model of any spoken, signed or writ-
ten language before going to school together, but started 
developing conventions and eventually grammatical rules 
in their signing, creating their language as they were in-

7 Nazzi, T., Floccia, C., & Bertoncini, J. (1998). Discrimination of pitch contours by neonates. Infant Behavior and Development, 21(4), 779–784.
8 Mampe, B., Friederici, A. D., Christophe, A., & Wermke, K. (2009). Newborns’ Cry Melody Is Shaped by Their Native Language. Current Biology, 
19(23), 1994–1997.
9 Werker, J., & Tees, R. (2002). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant 
Behavior and Development, 25(1), 121–133. 
10 Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S. & Iverson, P. (2006). Infants show a facilitation effect for native language pho-
netic perception between 6 and 12 months. Developmental Science, 9, F13-F21.
11 Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: Rate, content, and the vocabulary spurt. Journal of child language, 17(1), 
171-183.
12 Of course, there are more things thought to distinguish human language from animal communication. Some famous design features of human 
language are listed by Hockett, C. F. (1959). Animal ‘languages’ and human language. Human Biology, 31(1), 32-39.
13 Senghas, A., & Coppola, M. (2001). Children creating language: How Nicaraguan Sign Language acquired a spatial grammar. Psychological 
science, 12(4), 323-328.
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teracting with each other. Many other examples of similar 
community sign languages exist, and studying the emer-
gence of these systems is probably the most promising way 
of studying how language first came to be using currently 
available data.

CONNECTING TIMESCALES
We discussed three levels of language emerging, each 

applying to different timescales. Firstly, within the individu-
al during language processing, we have seen that it is hard 
to localize a specific ‘language area’ in the brain. In fact, 
it might not really be sensible on the neural level to even 
make hard distinctions between the processing of meaning 
and the processing of sentence structure, or even between 
language production and language understanding. Second-
ly, still on the individual level but over the time course of 
development, we saw that babies perceptually tune to the 
language they are learning in order to start recognizing 
words and eventually form complex sentences. But we also 
noted that our language use actually stays flexible and still 
develops in adulthood, such that it is a hard question what 
really constitutes the endpoint of language acquisition. Fi-
nally, on the species level over the timescale of evolution, 
we find that there are many open questions that will be 
hard to answer, but also that the emergence of language 
within a community can actually still be observed in the 
present.

So why do human languages work the way they do? One 
account stresses how languages themselves depend on 
the community of people using them. Potential elements of 
a language, which cannot be easily processed in real-time 
by all members of a community, will have a lower chance 
of persisting throughout that language. Similarly, grammat-
ical structures that are hard to learn for children will be 
less likely to be passed on to the next generation. In this 
perspective, the different levels we discussed above come 
together: languages themselves will adapt to existing hu-
man cognitive biases. Since languages are formed through 
communicative interaction, and through being repeated-
ly acquired by new learners, they will become easier to 
learn and use: humans adopt those words and grammatical 
structures that were easily learned by the humans before 
them, and those words and structures form the language14. 
To what extent this account can actually explain all the 
intricate grammatical differences between languages is of 
course still to be further examined, but it is a nice insight 
into the complex multilevel interactions behind language 
emergence.

14 This account is outlined in Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and brain sciences, 31(5), 
489-509. -- and also further discussed in the book mentioned in footnote 1.
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ABSTRACT
Many argue that people are prone to seek out positive experiences and knowledge whilst avoiding negative information. However, there 
are plenty of examples wherethis does not always hold true. Hence, if a person deliberately approaches negative stimuli will their defensive 
system engage differently? In the present study, we investigated the notion that approach behaviors towards negative stimuli may impact 
physiological responding. We hypothesized that approaching negative stimuli would down-regulate startle responses. A previously published 
paradigm was used which employed fEMG to the orbicularis oculi muscle as a measure of the startle response and consisted of a task 
which tested participants’ morbid curiosity behaviorally while eliciting startle probes to investigate the startle modulation response. Using 
this task, we were able to observe a clear startle modulation response; however, the effect of choosing to approach negative stimuli had 
an effect opposite to what we expected. This could be due to systematic errors in the paradigm, a range of confounds or excitation transfer 
phenomena. It could also be that the effect intended and expected is not there. Nevertheless, the fact that our results were inconclusive 
leaves the door open for further questions, manipulations, and improvements to better understand the effect of choice and approach 
towards negative stimuli.

Everyone has experienced jumpscares at some point, 
whether it is because of a scary movie or a startling sound, 
the feeling is familiar. It only takes a sudden loud bang for 
your body to react, your heart races and your palms sweat. 
This study particularly looked at such bodily responses 
elicited after a startling sound was presented during delib-
erate pursuit and exposure to negative stimuli. Many argue 
that people are prone to seek out positive experiences and 
knowledge whilst avoiding negative information (see Kry-
potos et al., 2015; Servatius, 2016). Nevertheless, there 
are plenty of examples that this does not always hold true. 
Familiar examples of this incongruence are seen in peo-
ple’s attraction of horror movies and crime shows; rubber-
necking (i.e. slowing down in a highway to look at an acci-
dent’s aftermath) and dark tourism (i.e. visiting sites known 
due to their negative associations). The incidence of these 
commonplace behaviors demonstrates the pervasiveness 
of approach behaviors towards aversive stimuli in life.

Classic theories of emotion tend to emphasize a bivari-
ate approach to emotion with valence and arousal as its di-
mensions and disregard motivational approach. However, 
as early as 1963, there were already discussions regarding 

the idea of a motivational system in terms of eithering or 
defensive approach (Sokolov, 1963). More recently, there 
has been a renewed interest in this third dimension to char-
acterize emotions.

Bradley and colleagues (Bradley et al., 2001) are pro-
ponents of a motivational approach by which there are two 
competing systems: an appetitive and an aversive system. 
These two systems summate for each stimulus encountered 
and give rise to the motivational intention each emotion 
has regardingthat stimulus. It is commonly assumed that 
stimuli that have a negative valence will result in avoid-
ance behaviors and engage a person’s defensive system 
(Phaf et al., 2014). It is an open question what whether 
the defensive system will engage differently when a person 
deliberately approaches negative stimuli.

A common way of testing motivational engagement in relation to 
affective stimuli is through the startle reflex (Bradley et al., 2001). 
As the name implies, the startle reflex is a response to external sud-
den stimulation, often presented aurally in the lab. The startle reflex 
comprises the whole body but is most commonly measured via ac-
tivity on the orbicularis oculi muscle which surrounds the eye (Jones 
& Kennedy, 1951; Bradley et al., 2001; Blumenthal, 2005). The 
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physiological activity in this muscle in response to the startle probe  
has been previously shown to be modulated by the presentation 
of affective images (Vrana et al., 1988; Lang, Bradley, & Cuthbert, 
1990) and therefore serves as a tool for understanding physiological 
responses towards differently valenced stimuli. This modulation is 
such that when people hear a short burst of white noise in combi-
nation with a negative stimulus (e.g. an image of a weapon) they 
show a stronger startle reflex than when they to hear a burst of white 
noise in combination with a neutral or positive stimulus (Vrana et al., 
1988). Similarly, it has been shown that a high startle reflex was elic-
ited by highly aversive and arousing content (Bradley et al., 2001).

Using a startle modulation paradigm, we seek to better under-
stand the desire to pursue negative information, also called morbid 
curiosity (Oosterwijk et al., 2015; Oosterwijk, 2017). In particular,we 
will study how a deliberate approach of negative information might 
influence bodily reactions towards the negative stimulus. Morbid 
curiosity is defined as a curiosity for information involving death, vi-
olence or physical harm (Oosterwijk, 2017). This paradoxical state 
combines the desire to fill an information disparity between what one 
knows and what one wants to know (Loewenstein, 1994; Golman & 
Loewenstein, 2015) with a specific intention to expose oneself to-
wards negative stimuli. Differences in response to usually aversive 
stimuli have been recently documented in the literature and have 
been related to individual differences. People with higher sensation 
seeking seem to engage more in approach motivational behaviors 
when presented with negative stimuli and have dampened fear-po-
tentiated startle and skin conductance responses to stimuli com-
pared to their low sensation seeking counterparts (Lissek & Powers, 
2003; Lissek et al., 2005).

The response modulation towards negative stimuli has been 
interpreted in several ways. There is evidence that physiological 
markers for arousal change according to the participant’s interest 
in the stimuli presented (Bradley et al., 2001; Lissek et al., 2005). 
Conversely, Lissek and colleagues have shown that people with 
high sensation seeking have lower anxious reactivity; namely, peo-
ple that seek stimuli have dampened arousal responses to them 
(Lissek & Powers, 2003; Lissek et al., 2005). Altogether, these find-
ings seem to suggest that participants often respond appetitively to 
negative stimuli and in doing so their physiological responses to-
wards negative stimuli change.

Present Study
The current study sought to investigate the relationship between 

morbid curiosity and the physiological state of the body. More spe-
cifically, we tested whether intentional viewing during negative im-
age presentation will down-regulate a person’s startle response as 
was previously observed by Lissek and colleagues regarding sensa-
tion seeking (Lissek & Powers, 2003; Lissek et al., 2005). This study 
also aimed to observe if there was a difference between high and 
low morbid curiosity individuals in their internal processing of stimuli 
as seen in their startle modulation. For this, facial electromyography 
was used as our primary dependent measure to record and ana-
lyze the startle reflex and modulation response (fEMG). Additionally, 

skin conductance response was also recorded as an exploratory 
measure to better characterize morbid curiosity’s physiological sig-
nature.

In order to assess the effects, a previously published paradigm 
will be used (see Oosterwijk, 2017). In this paradigm, half of the par-
ticipants were presented with a choice to view a neutral or a negative 
image under uncertain conditions (voluntary choice condition). The 
other half of the participants were presented with the exact same trial 
setup but did not have any choice; their images were selected by the 
system (computer condition). This distinction allowed us to directly 
observe the differences between choosing and being assigned a 
negative image to view. Hence, these two conditions were used as 
an independent factor which varied between participants. Moreover, 
curiosity was evoked by presenting participants with a series of 
choices in which the participant had to indicate whether they wanted 
to view a negative or a neutrally valenced image. Morbid curiosity 
was indicated by the number of times the participant chose to view 
the negative alternative (see further Oosterwijk, 2017). Through this 
operationalization, a person with a higher morbid curiosity would 
more often choose to view negative images whereas a person with 
low morbid curiosity would more often choose to view the neutral 
images. Based on this definition, this behavioral measure of morbid 
curiosity was treated as an independent variable in order to assess 
individual differences in responses to stimuli.

The present paradigm allowed participants to choose which stim-
uli they wanted to view, however, this posed methodological issues 
that needed to be addressed. Because morbid curiosity shows strong 
individual differences (Oosterwijk, 2017), the choice task could re-
sult in an unbalanced number of viewed negative and neutral imag-
es if the participants were always allowed to view what they chose. 
Not only would this have hindered our ability for sound statistical 
comparisons but also would have affected the startle response itself 
due to habituation. Because the startle reflex is particularly sensitive 
to habituation (Bradley, Lang, Cuthbert, 1993), we implemented an 
additional manipulation to ensure that participants all saw an equal 
number of negative and neutral images. This last manipulation in-
volved the probability that the image presented would be the one 
selected, either by the system (computer condition) or the partici-
pant (voluntary choice condition). More specifically, chance was in-
troduced in the form of an 80:20 probability of showing participants 
the image that was selected or the one that was not. As an added 
benefit, uncertain conditions have previously been shown to be the 
most effective to elicit curiosity towards negative stimuli (Hsee & 
Ruan, 2016). Thus, uncertainty was an independent variable varied 
within participants which improved the chances of eliciting morbid 
curiosity as well as balanced the participants’ exposure to negative 
and neutral images to avoid habituation effects and allow for sound 
statistical comparisons.

Due to the multiple variables and manipulations used in this 
study to make sure that people viewed an equal number of neutral 
and negative images, the design and the analysis used were intri-
cate. We decided to test our research question in three different 
ways, comparing different relevant conditions. The first analysis ex-
amined the general effect of choosing vs. not choosing irrespective 
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of how often people chose negative images. We hypothesized that 
the startle modulation effect would be stronger in the non-choos-
ing condition (computer) than in the choosing condition (voluntary 
choice) (H1). The second analysis compared the startle modulation 
effect between people who often choose negative images (high 
morbid curiosity) and those who did not (low morbid curiosity). This 
analysis was performed within the voluntary choice condition since 
there was not a way to discriminate between high and low morbid 
curiosity in the computer condition. We hypothesized that the star-
tle modulation effect would be larger among participants with low 
morbid curiosity as compared to participants with high morbid curi-
osity (H2). Note, however, that in this analysis, high morbid curiosity 
individuals viewed negative images that they chose, whereas low 
morbid curiosity individuals were confronted with negative images 
that they explicitly did not choose. Thus, in this comparison, the ef-
fect may be driven by the fact that people saw a negative stimulus 
that they explicitly noted that they did not want to see (and not by 
the fact that people saw a negative stimulus that they explicitly noted 
that they wanted to see). Because of the aforementioned ambiguity, 
we performed a final analysis in which we compared startle ampli-
tude between high morbid curiosity individuals and participants in 
the computer condition. More specifically, we hypothesized that the 
startle amplitude during negative images in the high chance condi-
tion for high morbid curiosity individuals is higher compared to the 
startle amplitude for negative images in the high chance condition 
for participants in the computer condition (H3). This analysis pro-
vided the most straightforward test of whether choosing negative 
images per se down-regulates physiological reactions.

METHODS AND MATERIALS
Participants

 In total, 110 subjects took part in this experiment. The sample 
had an average age of 24.63 (SD=8.91; due to missing data these 
descriptive measures only represent n=93) and was composed of 
72.2% women. One participant was excluded due to missing data 
and another due to recording issues; analyses are performed on 
the remaining 108 participants. Recruitment took place over two it-
erations of the study. The first data collection iteration took place in 
2013 and included 46 participants. Data from this iteration had not 
been analyzed before. The second iteration was during 2018 when 
64 participants were recruited. In total, there were less participantsin 
the non-choosing condition (computer, n=48) than in the choosing 
condition (voluntary choice, n=60). This is due to the first iteration 
of data collection having an increased number of people in the vol-
untary choice condition. Furthermore, the unequal group sizes were 
not corrected because they were useful for our analysis. Our second 
and third hypotheses call for a median split of the choosing condition 
and therefore a larger sample size for this condition would retain 
power for analyses. All participants were recruited via the University 
of Amsterdam online system and either participated for course credit 
or financial compensation.

Study Design
This study had a 2 (agency; voluntary choice vs. computer; var-

ied between participants) x 2 (chance; 20-80 vs. 80-20; varied within 
participants) x 2 (viewed stimulus; negative vs. neutral; varied within 
participants) mixed design. Agency and chance were manipulated 
to determine viewed stimulus. Agency was a two-level between-sub-
jects variable and described whether the participants could choose 
which image they wanted to see (voluntary choice condition) or 
whether the computer chose the images for them (computer condi-
tion). Chance was a two-level within subjects’ variable which varied 
in whether participants had an 80% or a 20% chance to see what 
they chose (in the voluntary choice condition), or whether partic-
ipants had an 80% chance or a 20% chance to see the negative 
option (in the computer condition). This variable was implemented 
in the design to balance exposure to negative and neutral stimuli, ir-
respective of the choices people make. Finally, the viewed stimulus 
is a within-subjects variable that reflects whether participants saw 
a negative or a neutral image in each trial based on their viewing 
history, selected choice, and a chance for a given trial. The depen-
dent variables measured are the proportion chosen negative images 
as well as the physiological response (i.e. skin conductance and 
facial electromyography) to the startle probe elicited during image 
viewing.

Procedure
Data were collected at the Universiteit van Amsterdam where 

participants were recruited and screened. Participants signed up 
for lab sessions based on a brief description of the experiment and 
what it entailed. Before their arrival at the lab, participants were as-
signed to a condition (computer or voluntary choice) and the appro-
priate programs were loaded onto the computer. Once participants 
arrived at the lab, they were informed of the task, its instructions, 
as well as warned about the sensitive content of the stimuli. If they 
consented to the experiment, participants completed the task during 
which facial EMG and skin conductance was recorded concurrently 
with their choice behavior. Finally, they were compensated for their 
time and participation in the form of research credits or cash before 
they left.

Task
The experimental task was presented using Presentation® soft-

ware (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, 
www.neurobs.com) to participants. Data was recorded using VSR-
RP (UvA TOP). Each trial for the experimental task consisted of the 
following. A fixation cross was presented for 500ms, followed by 
the written description of a neutral and a negative image on either 
the left orthe right side of the screen. The written description of the 
images was shown for 6 seconds after which an image needed to be 
selected. Next, participants in the voluntary choice condition could 
choose which image they preferred by pressing on either the left 
or right arrow key whereas participants in the computer condition 
were shown a screen saying,“The computer is choosing...”. After 
an image was selected, a pie chart was shown to the participants 
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for 2 seconds depicting the chances of the selected image being 
presented to them. The probability of viewing the image selected 
could be 80% or 20%. The probability displayed was based on the 
participant’s individual viewing history up to that point and the selec-
tion made for that trial. Hence, we could ensure an equal number of 
viewings for negative and neutral images for all participants. Based 
on the choice made for that trial and the probability of a particular 
image, the participants were shown either a negative or a neutral 
image for 6 seconds. The image presented would be in a large for-
mat and occupy most of the screen. Whilst the stimuli image was 
displayed, a startle probe was played aurally at 104db for all par-
ticipants. The startle probe was elicited at a jittered time (3, 4 or 5 
seconds) and consistedof a 400Hz white noise burst lasting 500ms. 
Finally, the trial ended with a 2-second inter-trial interval (see Figure 
1). The experimental task consisted of 80 trials where the startle 
probe was presented and 10 in which it was not. Out of the trials 
where the startle probe was present, 40 of them resulted in the par-
ticipant viewing negative images and the other 40 in the participant 
viewing neutral images. Location of descriptions (left or right side of 
the screen) for negative and neutral image descriptions would be 
counterbalanced across trials.

Stimuli
The study used images of either negative (e.g. ‘Man carries 

a dead baby’) or neutral (e.g. ‘Man carries a laughing baby’) va-
lence. Parts of the negative and neutral stimuli were selected from 
the International Affective Picture System (IAPS; Lang, Bradley & 
Cuthbert, 1997) and the Nencki Affective Picture System (NAPS; 
Marchewka, Zurawski, Jednorog, & Gradowska, 2013) which are 
commonly used in research in emotion science. In addition, images 
found on the internet were used to generate a sample of images that 
are large enough to carry out the relevant research. These images 
were mainly from news sites and have a similar, socially-negative, 
or socially neutral content as the images from the IAPS and NAPS 
dataset.

Startle Probe and Identification

Figure 1. Diagram of the task for participants in the voluntary choice condition (A) and in the computer condition (B).

The startle was elicited during stimuli presentation consisted of 
a 400Hz white noise burst lasting 500ms and presented through 
headphones at 104db. Based on the previous literature, the re-
sponse window was determined to be 21-200msec after stimulus 
onset (Berg & Balaban, 1999; Blumenthal, 2005). Startle responses 
are often analyzed in terms of percentage-based or standardized 
potentiation, however, there is evidence that this method is highly 
affected by artifacts and that standardized potentiation could skew 
the data (Bradford et al., 2015). Hence, we opted for analyzing the 
activity from the specified time window in terms of its raw potentia-
tion as has been previously suggested (Bradford et al., 2015). We 
also determined that the baseline activity with which to compare the 
startle response measured would be the preceding 50msec to stim-

ulus onset as suggested by van Boxtel (2010).

Pre-processing
All analyses were performed on the facial electromyographic 

(fEMG) amplitude of the startle response elicited. Raw fEMG trace-
swere processed before data analysis took place using in-house 
software (VSRRP). To prevent aliasing, the sampling rate of the re-
cordings was 1000Hz as suggested by Blumenthal and colleagues 
(2005). Amplification took place first within the in-situ amplifier. Next, 
the data collected was filtered using a notch filter at 50Hz which 
minimized noise from powerline and extraneous noise sources. Fol-
lowing filtering, the signal was rectified to avoid positive and nega-
tive components of the signal canceling each other out. Rectification 
involves summing the absolute values of the trace into a single pos-
itive waveform. Huang et al. (2005) suggest a full wave rectifier for 
this process which was implemented on VSRRP.

Outlier and Exclusion Criteria
After pre-processing, data points in which no startle response 

was present were recoded into zeros. A lack of a startle response 
was characterized as the minimum detectable response of the 
equipment used and therefore we heeded to what is suggested by 
Blumenthal and colleagues (2005) and marked non-response trials 
with a value of 0. Secondly, values for each participant were nor-
malized to z-scores in order to detect outliers. Each value that dif-
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fered more 3 standard deviations from the individual’s mean startle 
response was marked as an empty cell and excluded from further 
analysis. In a third step, the mean response of each participant was 
calculated and transformed to z-scores based on the sample mean 
and standard deviation. Participants were considered outliers and 
excluded from further analysis if their individual mean response 
overall deviated more than 3 standard deviations from the entire 
sample’s mean per condition and overall. Finally, as per the sugges-
tion of Blumenthal and colleagues (2005), participants who showed 
no startle responses in more than two-thirds of the trials were cate-
gorized as non-responders and excluded from further analysis (see 
also Mallan & Lipp, 2007).

Data Analysis & Hypothesis Testing
Three different hypotheses were tested in the present study. The 

first analysis examined the general effect of choosing vs. not choos-
ing irrespective of how often people chose negative images. We 
hypothesized that the startle modulation effect will be stronger in 
the non-choosing condition (computer) than in the choosing condi-
tion (voluntary choice) (H1). This hypothesis was tested with a 2x2 
mixed ANOVA with independent variables viewed stimuli (within) 
and condition (between). The second analysis compared the star-
tle modulation effect between people who often chose negative 
images (high morbid curiosity) and those who did not (low morbid 
curiosity). This analysis was performed within the voluntary choice 
condition. We hypothesized that the startle modulation effect would 
be larger among participants with low morbid curiosity compared to 
participants with high morbid curiosity (H2). To test this hypothesis, 
we performed a median split within the voluntary choice condition 
whereby participants who chose more negative images than the me-
dian were classified as having high morbid curiosity whereas those 
that chose less than the median were classified as having a low 
morbid curiosity. Then, we conducted a 2x2 mixed ANOVA com-
paring high and low morbid curiosity individuals’ mean peak startle 
responses across negative and neutral viewed image trials. Finally, 
we compared startle amplitude between high morbid curiosity in-
dividuals and participants in the computer condition. We hypothe-
sized that the startle amplitude during negative images in the high 
chance condition for high morbid curiosity individuals was higher as 
compared to the startle amplitude for negative images in the high 
chance condition for participants in the computer condition (H3). 
This analysis utilized the median split variable mentioned previous-
ly. An independent samples t-test was used to compare the mean 
startle amplitudes in the appropriate groups. In order to account for 
unequal groups’ sizes, we tested the assumption of homogeneity of 
variances using Levene’s test and corrected accordingly.

RESULTS
Sample

Data were analyzed for a total of 107 participants, due to three 
participant exclusions. Two participants were excluded due to data 
collection errors whereas the third was deemed an outlier when 
compared to all the other participants mean startle responses 

(|Z-scores|>3).  All participants had a measurable startle response 
in over two-thirds of the trials and therefore no participants were ex-
cluded due to non-responsiveness. All data analysis was conducted 
on SPSS 24 (IBM).  The data was checked for assumptions of nor-
mality which were violated (W-S Test, p<0.001).

Choice Behaviour
Participants chose the negative image an average of 27.38 times 

(SD= 22.69) out of 80 trials. It is noteworthy that the range for choos-
ing to view the negative image spanned over almost the entirety 
of the possible range given by the task. The hypothetical number 
of times a participant could choose the negative was between and 
including 0 to 80 whereas the recorded range of choosing negative 
images across participants (n=60) was between and including 0 to 
79.

Statistical Analysis
The first analysis examined the general effect of choosing versus 

not choosing irrespective of how often people actually chose neg-
ative images. It was hypothesized that the startle modulation effect 
would be stronger in the non-choosing condition (computer, n=47) 
than in the choosing condition (voluntary choice, n=60) (H1). This 
hypothesis was tested using a 2x2 mixed ANOVA with independent 
variables viewed image (within) and condition (between) on the 
mean startle peak amplitude. Assumption testing was conducted, 
and it was found that the data met the assumptions of homogeneity 
of covariance (Box’s Test, p=0.541) and of equality of Error Varianc-
es (Levene’s Test, Negative: p=0.957, Neutral: p=0.977). There was 
a significant main effect of image viewed (F (1,105) =14.82, p<0.001, 
η

p
2=0.124) in which negative stimuli (M=271.40; SE=23.37) had a 

larger amplitude than neutral stimuli (M=250.53; SE=22.43). On 
the other hand, there was no significant main effect of condition (F 
(1,105) =0.281, p=0.597, η

p
2=0.003), as observed in mean startle 

peak amplitude between the computer (M=273.03; SE=34.06) and 
the voluntary choice condition (M=248.90; SE=30.15). Finally, there 
was also no interaction between the valence of the stimuli presented 
and the condition assigned to each participant (F (1,105) =0.468, 
p=0.495, η

p
2=0.004).

The second analysis compared the startle modulation effect be-
tween people who often chose negative images and those who did 
not. This analysis was performed within the voluntary choice condi-
tion only and used a proxy measure of morbid curiosity. Morbid curi-
osity was operationalized as the number of times participants chose 
to view negative images. A median split was used to classify partici-
pants into high or low morbid curiosity groups based on their choice 
behavior. Participants who chose the negative option more often 
were labeled as having a high morbid curiosity (n=30) and those 
who chose it less often was labeled as having a low morbid curiosity 
(n=30). We hypothesized that the startle modulation effect would be 
larger among participants with lower morbid curiosity as compared 
to participants with higher morbid curiosity (H2). In order to test this 
hypothesis, a 2x2 mixed ANOVA was conducted with variables 
viewed image (within) and morbid curiosity level (between).
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Assumption testing was conducted before testing and it was 
found that the data did not meet the assumptions of homogeneity 
of covariance (Box’s Test, p<0.001) nor of equality of error varianc-
es (Levene’s Test, Negative: p=0.008, Neutral: p=0.004). Regard-
less, with equal group sizes, an ANOVA is generally robust against 
homogeneity violations, so it was conducted. After conducting the 
aforementioned 2x2 mixed ANOVA, it was found that there was a 
significant main effect of image viewed on mean startle peak re-
sponse (F(1,58) =5.01, p=0.029, η

p
2=0.08) in which negative stimuli 

(M=257.48, SE=30.46) resulted in a larger startle amplitude than 
neutral stimuli (M=240.32, SE=29.55). On the other hand, there was 
no significant main effect of morbid curiosity level (F(1,58) =69.94, 
p=0.195, η

p
2=0.029). This main effect showed, albeit non-signifi-

cantly, that participants with a high morbid curiosity (M=287.89, 
SE=42.09) had a stronger startle response than participants with 
a low morbid curiosity (M=209.92, SE=42.09). Similarly, the inter-
action between valence and morbid curiosity was not significant 
(F(1,58) =0.379, p=0.54, η

p
2=0.006).

Because of the ambiguity between shown and chosen images, 
we performed a final analysis in which we tested whether startle am-
plitude during trials in which negative images were presented was 
higher for people that chose to view negative images compared to 
those who were assigned to view negative images. This analysis 
provides the most straightforward test of whether choosing negative 
images down-regulates physiological reactions. This analysis draws 
on the median split mentioned previously which divided participants 
into high and low morbid curiosity groups. We expected that startle 
amplitude for negative images would be decreased for people who 

Figure 2. Mean peak startle amplitude between choosing conditions comparing startles 
that took place when the participants were viewing negative of neutral images. Error bars 
show +/-SE.

Figure 3. Mean peak startle amplitude between participants in the Low and High morbid 
curiosity (MC) groups comparing their mean peak startle responses when presented with 
negative or neutral stimuli. Error bars show +/-SE.

often chose to view and saw said images (n=30) compared to peo-
ple confronted with negative stimuli outside of their control (n=48). 
This hypothesis was tested using an independent samples t-test. 
Assumption testing was conducted beforehand, and it was found 
that the data did not meet the assumption of equality of error vari-
ances (Levene’s Test, p<0.001). Therefore, the t-test conducted was 
corrected and showed a marginally significant effect of choosing to 
view negative images as opposed to being merely assigned to them 
(tcorr(30.27) =-1.79, p=0.083). Anecdotally, the means seemed to 
show that participants who chose to view the negative stimuli (n=30, 
M=484.15, SE=42.09) had a higher startle response than those that 
were assigned to negative stimuli (n=48, M=407.99, SE=6.21). 

DISCUSSION
All in all, our findings are inconclusive with regards to the hypoth-

eses being tested. In the first test, when comparing between con-
ditions (voluntary choice vs. computer) irrespective of actual choice 
we found no significant effect of condition on the mean startle am-
plitude and a significant effect of startle modulation between what 
images presented. On the second test, we compared high and low 
morbid curiosity participants and found that they had no significant 
differences between each other as well as a significant difference in 
startle modulation. Finally, on the third test, we found a marginally 

significant effect of choosing or being assigned to negative stimuli 
when looking at trials where only the negative stimulus was pre-
sented

These findings clearly show an effect of startle modulation which 
matches the effect described previously by Vrana and colleagues 
(1988). This is important as it constitutes a manipulation check on 
the protocol used. By observing this very strong effect of the image 
presented on the startle modulation, we can see that the program 
and measures used are capturing a startle modulation effect consis-
tent with previous findings. This, in turn, allows us to focus on the 
differences elicited by choosing. In this case, the effects of choosing 
are a lot less clear since they are for the most part (2 out of 3 tests 
showed no main effects of choosing nor interactions) non-signifi-
cant.

Even from the non-significant results, we can derive knowledge. 
From our first analysis we can observe that there is no effect of 
condition on startle response, hence there is no indication that 

Figure 4. Mean peak startle amplitude while viewing negative images between participants 
who had a high chance of viewing a negative image in the computer condition (Assigned 
Negative) compared to those with a high morbid curiosity who chose to view negative im-
ages and had a high chance of being presented with a negative image (Chose Negative). 
Error bars show +/-SE.
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choosing to view stimuli as opposed to being confronted with stimuli 
down-regulates the startle response. Moreover, the second analy-
sis indicates that the effect of choosing does not change the startle 
response significantly when accounting for the individual choice pat-
terns of participants themselves (i.e. High and Low Morbid curiosity 
participants). Finally, in the third analysis, we can observe that there 
is a marginally significant effect of choosing to view negative stimuli 
as opposed to being assigned to them (p=0.08). This effect could 
prove to be interesting for future directions and warrants a closer 
look.

The fact that our results are not consistent with the work by 
Lissek and colleagues (2003 & 2005) is puzzling. We based our 
hypotheses on the assumption that we would be able to show sim-
ilar trends to those shown by Lissek and colleagues, based on the 
assumption that morbid curiosity is related to sensation seeking. 
One possible explanation for the different findings is that Lissek and 
colleagues used a self-report questionnaire measured in order to 
determine sensation seeking scores and levels (Lissek & Powers, 
2003; Lissek et al., 2005). Our failure to mimic their findings could 
also stem from the fact that our measure of morbid curiosity was 
based on the participant’s behavior during the task itself rather than 
a self-report questionnaire. This would point towards a difference in 
processing in the spur of the moment as opposed to when filling out 
the questionnaire. Due to this conflicting information, it is also im-
possible to determine which of them provides a more accurate por-
trayal of the information processing of negative information in terms 
of startle modulation responses. Therefore, studies using behavioral 
measures of sensation seeking or a questionnaire to quantify mor-
bid curiosity could be useful in comparing these two methodologies 
and better understand the system at play and where could these 
differences stem from.

Additionally, we need to consider that our hypotheses were 
wrong, and that a state of curiosity may very well enhance the star-
tle response. First, the experience of curiosity itself may be an ex-
perience with some degree of arousal due to curiosity relief (Van 
Lieshoutet al., 2018). Second, participants may have experienced 
a build-up of anticipation or uncertainty regarding the viewing of the 
negative stimuli that they chose. There is evidence that anticipation 
and uncertainty are highly arousing states. For example, both uncer-
tainty, empathy and emotional feelings engage the anterior cingu-
late cortex and the insula, brain regions associated with generating 
and representing arousal in the body (Singer et al., 2009). Taken 
together, these two sources of arousal may have spilled over to the 
time window in which the startle probe was encountered, through a 
phenomenon called excitation transfer (Zillmann et al., 1972; see 
also Oosterwijk et al., 2010). Excitation transfer refers to when an 
increased arousal or excited state from one action or task can be re-
flected on the subsequent action or task. Hence, it is not far-fetched 
to think that the excitement created by the choice to view a negative 
stimulus could have affected the subsequent events, namely, the 
viewing of the negative image, the startle probe, and the ensuing 
reflex. This excitation transfer may explain why our results are the 
opposite of what was expected and why mean peak startle ampli-
tude is highest for participants in the voluntary choice condition who 

had a personal stake in choosing and were waiting to see if they got 
what they wanted.

Finally, it is worth pointing out that confounds could arise from the 
task that we used. First, tiredness was sometimes mentioned by the 
participants as they departed. This is understandable as the exper-
iment took approximately an hour and in the case of the computer 
condition they did not have to engage with the task at all. Additional-
ly, due to the task’s coding, stimulus identity could not be accounted 
for in each trial. This means that it was not possible to determine 
if there were stimuli that were driving the effects observed or lack 
thereof. Likewise, without stimuli identity, it was also not possible 
to organize events chronologically and therefore we were unable to 
account for any habituation that could have been taken place in the 
latter parts of the experimental task.

Luckily many of the issues mentioned before can be solved or 
at least further investigated to varying degrees. To account for ex-
citation, transfer due to uncertainty after their choice, it would be 
useful to include trials were certainty is taken out of the question. 
This could be done implemented in the task in the form of 100% 
chances of viewing a negative or a neutral stimulus per trial, this 
way a control for anticipation could be included in the task itself and 
further used for analysis purposes. In terms of fatigue, it is harder to 
account for it. An option would be to decrease the number of trials 
in the experiment or to divide it into multiple sessions or blocks. De-
creasing the number of trials would decrease power and dividing it 
up into sessions could increase the attrition rate of participants. An 
alternative, albeit arguably it could have its own issues, is through 
a self-report exit questionnaire. This way potential confounds, such 
as perceived and subjective fatigue, can at least be quantified and 
consideredin the analysis and interpretation of the data. In order to 
address the boredom and monotony facing participants particularly 
those in the computer condition, it might prove useful to include a fill-
er task to keep them engaged with the experimental task. This could 
be as simple as a basic search task where they would have to press 
left or right arrow key depending on which side of the screen the 
object is presented.This would enable the participants in the com-
puter condition to engage with a task that is likely to need minimal 
cognitive memory resources and use a similar movement pattern 
than participants in the voluntary choice condition. Finally, it would 
be interesting to analyze the skin conductance responses obtained 
as exploratory measures to better assess whether curiosity itself is 
an arousing state that sharpens people’s physiological responses.

There is much to be learned from the questions that arise from this 
study, even if we were not able to conclusively observe the physio-
logical differences between being deliberate and assigned exposure 
to negative stimuli. The results obtained were the opposite of what 
was expected based on previous findings which beg the question 
as to why. Furthermore, the results could be due to methodological 
confounds embedded in the paradigm. It may very well be the case 
that there are no startle response differences present due to choos-
ing and a different measure or method is needed. Nevertheless, all 
these questions and issues were identified through this experiment 
which was able to shed light on the complexity of understanding the 
mental state of curiosity and its physiological consequences.
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Complexity: 
A Very Short Introduction
Review by Sammy Millard

It is logical for introductory books to begin by defining 
the subject matter. However, a clear definition of complexi-
ty is not that straightforward. Much like life and conscious-
ness, there is no rigorous definition of complexity. There-
fore, Holland takes the strategy of introducing the reader 
to the idea of complexity using well-known examples to 
illustrate specific features of complex systems, such as di-
versity and interconnectivity. One major concept Holland 
introduces is emergence: a phenomenon that occurs when 
behaviours or properties of a system are more than the 
sum of the system’s parts. For example, neurons in the 
nervous system can create complex human emotions that 
cannot be attributed to the simple sum of these neurons. 
Holland states that emergence is “the primary character-
istic that distinguishes complex systems as an important 
subset of complicated systems” (p.85).

Throughout the remainder of the book, Holland gives an 
overview of the concepts and terms used within the field 
using clear and relevant examples. This way, the book pro-
vides you with a solid grounding for when you next pick 
up a paper incorporating ideas from complexity science. 
In particular, Holland discusses the distinction between 
complex physical systems, such as predicting the weather, 
as well as complex adaptive systems, which include rain-
forest ecosystems, ant colonies, and the economy. After 
this, the remaining chapters are titled: Agents, networks, 
degree, and recirculation, Specialization and Diversity, 
Emergence, and Co-evolution and the formation of niches. 
Holland ends with a chapter titled: Putting it all together. 
This is a very important and well thought out section as it 
ties together what has been discussed by introducing the 
role of overarching frameworks.

Holland covers a wide array of profound topics in a 
well-written fashion. However, it still may not be suitable

“T he late John H. Holland (February 2nd, 1929 – August 9th, 2015) was a professor 
of psychology as well as a professor of electrical engineering and computer sci-
ence at the University of Michigan. Holland was a pioneer of ‘genetic algorithms’ 
and the author of several books on complex adaptive systems. The last of his 

books, Complexity: A Very Short Introduction, was published in 2014 (Oxford University Press) 
and is reviewed here. The study of complexity is highly important as it can be applied to a variety 
of settings and subjects. In fact, ideas from different areas within complexity were used for many 
decades before links between them were discovered and a distinctive field developed. 

for someone completely new to the topic. As this book 
is on the topic of complexity, the fact that it is very short 
should not fool you into thinking this book is simple. I per-
sonally had to read the book twice to gain the level of un-
derstanding I desired from the read, and it isn’t exactly an 
easy bedtime read. Luckily a 90 page, 7-inch tall book does 
not take too long to complete. As a result, I would say this 
is a somewhat approachable overview. Especially for those 
interested in dipping their toes into this field via the words 
of an esteemed expert, this is certainly a worthwhile read.

Despite the oxymoron that is a very short introduction to 
complexity, Holland achieves his aim of presenting “a gen-
eral idea of what we know and don’t know about complex 
systems, with an emphasis on how an overarching theory 
would increase our understanding” (p.90). Additionally, the 
final “Short Summary” helps to link together the complicat-
ed ideas introduced to you throughout the books, and thus 
appears relatively concise despite being six pages long. 
Holland fittingly ends by pointing towards the future, stat-
ing that the field moves towards a currently undiscovered 
overarching theory of complexity.
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